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Abstract. The concept of central configuration is important in the study of total collisions, 

in the relative equilibrium state of a rotating system or in the variation of the topological 

type of the energy and angular momentum invariant manifolds in the n-body problem, in 

close connections with homographic motions. In this paper by using the variation of he 

moment of inertia we characterize those particular solutions of the n-body problem, in 

which the bodies form a central configuration at any moment of the motion, which are not 

necessary supposed to be homographic solutions. 
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1.  INTRODUCTION 

This paper concerns an old problem, which arose in celestial mechanics: 

the problem of central configurations of the n-body problem and connections 

with homographic motions. The n barycentric position vectors xi of the n bodies 

with masses mi form a central configuration, if the force of gravitation acting on 

mi at the moment of the given configuration is proportional to the mass mi and to 

the barycentric position vector xi. The notion of a central configuration was 

introduced by Laplace (1789). 

There are several reasons why central configurations are of interest in 

celestial mechanics. If the masses are released from a central configuration with 

zero initial velocity, then all particles accelerate toward the origin in such a way 

that the configuration collapses homothetically. The result is a collision 
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singularity. Simple collision orbits of this kind were the first explicitly known 

solutions of the 3-body problem (Euler 1767). These are not the only possible 

orbits which end in collision of all n particles, but it can be shown that for any 

such orbit, the configuration is very close to central configurations. The 

homothetical collapse play an essential role in the stellar evolution (the initial 

collapse of a cloud of dust particles, the final collapse of the star), where the 

number of particles (molecules, then atoms or nuclei and electrons) is so large 

and the particles are so tiny that the configuration usually is approximated with a 

continuum. 

A planar central configuration also gives rise to a family of periodic 

solutions. The particles are released from the central configuration with initial 

velocities normal to their position vectors and with magnitudes proportional to 

their distances from the origin. Each particle will traverse an elliptical orbit as in 

the Kepler problem; moreover, the configuration remains similar to the initial 

configuration throughout the motion, varying only in size, i.e., the solutions are 

homographic. If the velocities are just large enough, the orbits will be circular. 

As the velocities tend to zero, the ellipses become more and more eccentric and 

the periodic solutions approach the collision solutions of the previous paragraph. 

The central configurations also play a role in the study of the topology of 

the energy and angular momentum invariant manifolds of the n-body problem. It 

is known that in the three-body problem bifurcations in the topological type of 

invariant manifold occur at the levels which contain the circular periodic orbits 

mentioned above (Smale 1970a,b; McCord at al. 1998). 

Finding all central configurations for an arbitrary number n of points is a 

difficult problem, which is still open. In the trivial case n = 2 all configurations 

of the two bodies are central configurations. We list the most important results 

known presently in this direction, for n  3. 

For n = 3 the only no collinear central configuration is formed by the 

vertices of an equilateral triangle (Lagrange 1873). For n = 4 the unique no 

coplanar configuration is given by the vertices of a regular tetrahedron (Dziobec 

1900). The general approach to central configurations is also due to O. Dziobec 

(1900). 

The collinear central configurations are described by the following theorem 

of Moulton (1910): each enumeration of the points uniquely determines a central 

configuration in which the points lie collinearly in the given order. Therefore, 

there are exactly n!/2 distinct collinear central configurations. For n = 3 there are 

exactly three such configurations, discovered by Euler (1767). 

In the last years many authors studied different aspects related to the central 

configurations (e.g. Moeckel 1990, Llibre 1991, Meyer and Scmidt 1993, 

Casasayas et al. 1994, Albouy 1995, Moeckel and Simó 1995). 
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A given solution of the problem of n bodies is called homographic if the 

configuration formed by the n bodies moves in the inertial barycentric coordinate 

system in such a way as to remain similar to itself when the time varies. 

The basic result connecting homographic solutions and central configurations can 

be formulated as follows (see Wintner, 1941): A solution of the n-body problem with 

given values mi of the masses, is homographic if and only if the mass points form the 

same central configuration for every moment t. As also Wintner mentioned, if there 

exists a continuum of distinct central configurations for n given masses, it may occur 

that these mass points form a central configuration for every moment t in a suitable 

solution which is not homographic, since the central configuration might then vary with 

t. 

In this study we investigate the variation of the moment of inertia, if are 

considered only those particular solutions of the n-body problem, in which the bodies 

form a central configuration at any moment of time. The studied solutions are not 

necessary homographic ones. 

 2. CENTRAL CONFIGURATIONS AND HOMOGRAPHIC SOLLUTIONS 

The Newtonian n-body problem concerns the motion of n point particles with 

masses m1, , mn (mi > 0, i = 1, , n), in the Euclidean space R
3
, subjected to the 

mutual Newtonian attractions.  

The configuration space is the 3n-dimensional manifold 
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 being the set of singularities of V. 

The equations of the motion of the n-body problem are: 

  )4(,,,1,grad nixVxm iii    

where gradi is taken with respect to the usual Euclidean metric on R
3
 in the i-th factor 
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of  n3
R .  

In order to simplify the problem, we fix the center of mass of the system at origin. 

In other words, we want to consider the linear manifold 
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In the n-body problem the moment of inertia of the system  
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and the force function U = –V are connected in the Lagrange–Jacobi equation:  
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where Rh  is the energy constant in the n-body problem (Wintner, 1947). 

 A configuration Mx  is called central configuration in the n-body problem, if 

there is some R  such that 
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An immediate result says that the configuration Mx  is a central configuration 

if and only if x is a critical point of the map     ,:2 RMxUxIx that is:  

   )9(02 ,xIUd   

(e.g. Wintner, 1947). 

 A given solution  txx ii   of the problem of n bodies is called homographic if 

the configuration formed by the n bodies at a given t0 moves in the barycentric 

coordinate system in such a way as to remain similar to itself when t varies. By this is 

meant that there exist a scalar  trr   and an orthogonal 3-mtrix  t  such that 

for every i and t one has       ,
0

ii xttrtx   where 
0

ix denotes ix at some initial 
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 The more important result connecting homographic motions and central 

configurations can be formulated as follows (Wintner, 1947): A solution  txx ii   of 

the problem of n bodies, with given values im of the masses, is homographic if and 

only if there exist two functions    ttr ,  and n initial position vectors 
0

ix  by means 

of which    txtx n,,1   can be represented in the form 
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 The conservation of energy and angular momentum of the system (12) tell us that  
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with 
00 / Ihh  and ,/ 00 ICC   where h is the total energy and C the total angular 

momentum of the system. Eliminating  from equations (15), we have 
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 Introducing the moment of inertia I in place of r, by using ,02 IrI   equation 

(16) is equivalent with 
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3. VARIATION OF THE MOMENT OF INERTIA 

Let now consider those solutions  txx   of the equation (4) of the n-body 

problem, in which the configuration x(t) is a central configuration at any moment t. 

These are not necessary homographic solutions (see Wintner, 1947, p. 298). For these 

solutions condition (9) implies that 
2IU is constant, i.e. 
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Substituting U from (18) in the Lagrange-Jacobi equation (7) one obtains:  
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Multiplying equation (19) by 
2IU  and integrating, we obtain the equivalent form 
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where c is a constant.  

 We can observe that equation (20) describing the variation of the moment of 

inertia of solutions supposed to form a central configuration for any moment is the 

same, with the equation (17), which describes the variation of the moment of inertia in 

homographic solutions, a subset of the solutions have been here considered. 

 Introducing the new variable r, connected with I by ,02 IrI   equation (20) 

leads to 
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This equation can be integrated, and according to the sign of the energy h we 

have different cases:  

(i) If h < 0 and     00020200 882 hIIUIhUI   , then the motion is not 

possible. 

(ii) If h < 0 and     00020200 882 hIIUIhUI   , then the variation of the 

moment of inertia is described by: 
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where 1 is the moment, when the left hand side expression is zero. The variation 

of the moment of inertia is periodic (fig. 1). The whole system has an “elliptical” 

type motion. 

(iii)  If h = 0, then 
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where 2 is the moment, when the left hand side expression is zero. The variation 

of the moment of inertia is unbounded (fig. 2). The whole system has a motion of 

“parabolic” type. 

 

 (iv) If h > 0, then  
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where 3 is the moment, when the left hand side expression is zero. The variation 

of the moment of inertia is boundless (fig. 3). The system has a motion of 

“hyperbolic” type. 

 

 

 

 

Figure 3: h > 0, (I
0
 = 1, 10 I ) 

 

Figure 2: h = 0, (I
0

 = 1, 10 I ) 
 

Figure 1: h < 0, (I
0
 = 1, 10 I ) 
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4. CONCLUSIONS AND ACCNOWLEDGMENT 

Our results show that in this larger family of solutions, in which we suppose only 

that the configuration of the n bodies form all time a central configuration, there are 

only three types of possible motions, the same families of solutions as in the classical 

case of homographic motions. This result is immediate, if there are no continuum 

families of central configurations, including distinct central configurations, because in 

that case our family of solutions coincides with the homographic solutions. But the 

inexistence of continuum families of central configurations is only o not proved 

conjecture (Wintner, 1947; p. 282, §365). This result eventually is going to confirm 

that the conjecture is plausible. 

The authors express those thanks and gratitude to Florin Diacu for his 

suggestions. The first author was supported by the Hungarian Academy of Science, 

trough the Bolyai grant BO/0003/04. 
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