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Abstract. The astronomical refraction for the ellipsoidal atmosphere of the Earth is 

calculated, when the light ray is situated in the meridian plane of the place. It is  shown 

that the Laplace-Oriani theorem is also valid for the considered model. By comparing 

these results to the ones of the spherical model, it is ascertained that the refraction 

calculated for the ellipsoidal model is greater than the one for the spherical model, the 

difference increasing with the zenith distance and depending on the latitude of the place. 
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1. INTRODUCTION 

 

Even from the beginning of the XX
th
 century, a model of the atmosphere of the 

Earth has been searched, which may allow the calculation of the astronomical 

refraction with a better approximation than in the case of the classical model of the 

atmosphere, composed of concentric spherical layers. An initial model was 

proposed by Harzer (1922,1924), which took into consideration the Earth as being 

a revolution ellipsoid, and the atmosphere as being composed of optic surfaces. 

This model was improved by Sergienko (1979), Shabelnikov (1983), Yatsenko and 

Teleki (Yatsenko and Teleki 1985;Yatsenko 1995), the calculation still being time-

taking. A different model, geometrically simple, was provided by the first author of 

this paper (Mihăilă 1973), who considered the atmosphere as an ellipsoidal layer. 

We add also that a first attempt to consider the optical surfaces as spheroidal 

was made by Radau (1882, 1889). He shows that the effect of the inclination of the 

surfaces with respect to the spherical surfaces is small and increases in the 

neighbourhood of the horizon. On the other hand, afterwards Newcomb (1906) 

considered the equipotential surfaces of the atmosphere as ellipsoidal. But he 
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replaces the radius of curvature of the surface at each point of the trajectory by the 

sum of the radius of curvature of the Earth ellipsoid at the observational place and 

the height of the considered point. For this reason the effect of curvature is 

diminished, and Newcomb concludes that this can be neglected. 

In this paper, making use of the refraction integral deduced by the first author, 

we shall present the calculation of the refraction for the ellipsoidal model, when the 

refracted ray is situated in the meridian plane of the observational place, and the 

obtained results will be compared to those from the spherical model, for zenith 

distances up to 70.  

We specify that the observations made on the Earth for the precise 

determination of angular coordinates of celestial bodies are carried out through 

observation of their passage over the meridian of the place. Only in this case the 

path of the light ray is a plane curve. 

 
   

 

2. REFRACTION  SERIES 
 

It is assumed that the atmosphere of the Earth is composed of ellipsoidal layers 

of constant density. The separation surfaces of the layers are homothetic ellipsoids, 

one of these being the ellipsoid of the Earth. The intersections of these surfaces 

with the meridian plane of the observational place will be homothetic concentric 

ellipses. For this model, the first author obtained the following formula for the 

integral of refraction (Mihăilă 1973) 
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where z is the observed zenith distance, r is the radius of curvature of the ellipse 

which passes through the current point P on the light ray trajectory in the 

atmosphere, and n the refraction index of the atmospherical layer in which the 

considered point is situated. The suffix zero signifies the data from the 

observational place P0. The integral has the same form as in the case of the 

spherical model, with the simple difference that it contains the radius of curvature 

instead of the geocentric distance. The relation (1) can also be written as 
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We introduce the following notation 
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For  z  70, 2u  takes smaller values than 2.510
-2

, hence the following series 

expansion can be used 
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Performing the replacement in relation (2), we obtain 
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From this series, only the first two terms have significance for z  70, with an  

error less than 0.001. Therefore, we can write 

,tantan 3
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The ratio 
r

r0  is a complicated function of a - the semimajor axis of the ellipse 

passing through the current point P of the ray trajectory and of  - the geodetic 

latitude of point P. Proceeding as in the case of the spherical model (see, e. g., 

Dinulescu, 1967), we shall use the following transformation 
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Using the expression of the radius of curvature of the ellipse, this can be written 
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The product 0
22 sin e  is very small, between 0 and 6.410

-3
. Therefore, 

developing in series and keeping the first two terms, we obtain 
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Finally, we obtain  
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Because the product     ,104.6sinsin 3
00

2  e developing in series 

and retaining the first two terms, we can write 
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Because the geodetic latitude variation of the current point is small, the value of 

2cos  can be averaged by the formula   

         ,2cos2cos
2

1
2cos 0  i                                     (12) 

where i is the geodetic latitude of point  Pi, where the radiation penetrates the 

terrestrial atmosphere at the upper limit. This latitude is obtained approximately, 

determining the position of the point situated at the intersection of the tangent to 

the trajectory in P0 with the ellipse corresponding to the upper limit of the 

atmosphere . Because only a thin layer of the height km80h  produces a sensible 

refraction effect (Dinulescu, 1967), we assume for more accuracy that the upper 

limit of the atmosphere is situated at km100h .  

 

 
Fig. 1 – The configuration from the meridian plane of the place  

 

The coordinates of the point of entrance in the atmosphere are given by the system  
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where a0 and b0 are the semiaxes of the terrestrial meridian. If (xi, yi) is the solution 

of the system (13), then 
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coefficient c  from (7) becomes 
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Replacing the ratio 
r

r0  from the relation (7) in the integrand of A0, we obtain 
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This integral can be written 
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For the dependence between the refraction and density indices, we shall use, for 

simplicity, the Gladstone relation  
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where  is the density. 

On the other hand, the dependence between the density of the atmosphere and 

the pressure of the atmosphere is given by the equation of hydrostatic equilibrium  
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of the Earth, and fM the geocentric gravitational constant. When a varies, a takes 
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Replacing the expression for  ag  in the equation (18), we obtain 
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Let ec be the first ratio of the last member of the equality and let us consider ec = 

0.0013260. Using (18), we have  
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Returning to the integral (16), this can be written  
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Approximating the ratio 
n

n0  by 1 and denoting 10 n  by 0 , we obtain 
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Therefore, the first coefficient has the expression  
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Integrating from 1 to n0  and using the integral (25), we obtain  
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In the obtained expression 3
0   can be neglected, because the error introduced in 

such a way is less than 0.005. Consequently, we can write  
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Substituting the expressions (26) and (29) for A0 and A1 in (5), we come to 

the conclusion that for 
70z  the Laplace – Oriani theorem is also valid for the 

ellipsoidal model. Therefore for zenith distances below 70 the astronomical 

refraction is independent of the structure of the atmosphere. Evidently, for the 

excentricity 0e , c  becomes 1, and the obtained formula is reduced to the 

Laplace formula.   

 

 
3. RESULTS 

 

On the hypothesis in which the atmosphere of the Earth is composed of 

concentric spherical layers, the astronomical refraction can be calculated, for zenith 

distances z  70, using the Laplace formula 
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For this calculation, we shall consider the values 0002927.00  and 

.0013238.00   
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In the present study the atmosphere of the Earth was considered to be 

composed of ellipsoidal layers, of the same eccentricity. From the geometrical 

point of view, this model represents a better approximation of the Earth and of the 

terrestrial atmosphere. Consequently, the obtained refraction formula is more 

complicated. Naturally, there arises the problem of comparing the values obtained 

for the refraction to those given by the spherical model. 

 The refraction formula in the case of the ellipsoidal model is  
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where c  is given by the  formula (14). For calculation we shall adopt the values 

0002927.00  , 0013260.0ec . 

In Table 1 are presented the values of the refraction R (in arcsec), for a few 

zenith distances (in degrees), calculated using the Laplace formula. 

Table 2 presents the differences   RRz  ,  of the refraction values (in 

arcsec), calculated for the ellipsoidal model and for the spherical model, as a 

function of the zenith distance and latitude (in degrees).  

Figures 2 – 4 represent the differences  ,z  for the geodetic latitudes of 30, 

45 and 60.  

It is ascertained that the differences have a systematic character. Beginning 

with 50 zenith distance for any latitude (excepting zero latitude ) the differences 

become approximately ≥ 0.01. The maximum values of the differences are 

ascertained for the latitude of 45. Therefore, the results obtained using the 

atmospherical model proposed in this paper prove that, at least for the meridian 

plane of the obsevational place, the refraction is greater than the one calculated in 

the case of the spherical atmosphere of the Earth. 

 
 

Table 1 

 

Refraction for the spherical model 

 

z R z R 

0 0 60 104.063 

20 21.942 62 112.923 

30 34.797 64 123.008 

40 50.551 66 134.617 

45 60.223 68 148.154 

50 71.735 70 164.181 

55 85.901   
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Table 2 

 

The differences ),( z of the refraction value for the ellipsoidal model as compared to the value for 

the spherical model 

 

  
z 

0 10 20 30 40 45 50 60 

0 0 0 0 0 0 0 0 0 

20 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 

30 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002 

40 0.000 0.002 0.003 0.005 0.005 0.005 0.005 0.005 

45 0.000 0.003 0.006 0.008 0.009 0.009 0.009 0.008 

50 -0.001 0.005 0.010 0.013 0.015 0.015 0.015 0.013 

55 -0.001 0.009 0.017 0.023 0.027 0.027 0.027 0.024 

60 -0.002 0.016 0.033 0.045 0.052 0.053 0.052 0.046 

62 -0.003 0.021 0.043 0.060 0.069 0.070 0.069 0.062 

64 -0.004 0.029 0.059 0.082 0.094 0.096 0.095 0.084 

66 -0.006 0.040 0.082 0.113 0.130 0.133 0.131 0.117 

68 -0.010 0.057 0.116 0.160 0.185 0.189 0.187 0.166 

70 -0.014 0.083 0.169 0.234 0.271 0.277 0.274 0.244 
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Fig. 2 – Difference of the refraction values for the latitude of 30. 
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Fig. 3 – Difference of the refraction values for the latitude of 45. 
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Fig. 4 – Difference of the refraction values for the latitude of 60. 

   

 

The found differences are due to the c  factor, which in the case of the 

spherical model becomes 1. This factor depends on the latitude and the zenith 

distance (Table 3). 
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Table 3 

The values of c  factor (z and  in degrees) 

 
     

z
0 30 45 60 90 

0 1 1 1 1 1 

20 1 1.000024 1.000028 1.000024 1 

30 1 1.000039 1.000045 1.000039 1 

40 0.999999 1.000056 1.000065 1.000056 1.000001 

45 0.999999 1.000066 1.000077 1.000067 1.000001 

50 0.999998 1.000079 1.000092 1.00008 1.000002 

55 0.999998 1.000094 1.000109 1.000095 1.000002 

60 0.999997 1.000112 1.000131 1.000115 1.000003 

62 0.999996 1.000121 1.000142 1.000125 1.000004 

64 0.999995 1.000132 1.000154 1.000136 1.000005 

66 0.999994 1.000143 1.000168 1.000148 1.000006 

68 0.999993 1.000156 1.000184 1.000162 1.000007 

70 0.999992 1.000171 1.000202 1.000179 1.000008 

 

 On the other hand, for a given latitude, c  is an increasing function of altitude and 

zenith distance. For the latitude 45 , the function     4101 chf  is 

represented in Fig. 5. 
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Fig. 5 – Dependence of the c  factor of altitude for 

45   

Obviously, the values of c  make physical sense only to height of the layer which 

produces a sensible refraction effect. For larger heights, although c  increases, the 

effect is insignificant, because refraction tends to zero. 
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