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Abstract. Popescu et al. (2004) gave a model for the observed cosmic rays between 15105   

and 18103   eV. Their source is presumed to be the supernova of stars that explode in their 

winds. The observed cosmic rays abundance at the source are affected by spallation in the 
supernova shell, by the difference in ionization degree (being one or two times ionized) at 
the injection in the supernova shock, the stars with initial masses 15MSun ≤ M ≤ 30MSun  
having a different contribution to them than the stars with 30MSun ≤ M ≤ 50MSun, this being 
2:1 for the elements with Z ≥ 6. Still, the abundances after these corrections are different by 

a factor Hei ZZ / , where iZ is the atomic number for the element i. This paper is dedicated 

to the explanation of this factor and its physical meanings by considering that, prior to the 
shock injection, the wind particles are radiative accelerated. 

Key words: cosmic rays – radiative acceleration – Wolf-Rayet stars. 

1.  INTRODUCTION 

To understand why we need a radiative acceleration of cosmic rays (CRs) and an 

phase space dispersion before injection in the supernova shock of the particles found 

in the Wolf-Rayet wind we will do a brief presentation of our previous results 

(Popescu et al. 2004) on PeV-EeV energy range CRs. 

These results show that the ions that can be found in the atmospheres of stars 

with initial masses of 15MSun ≤ M ≤ 50MSun  are possible to be the CRs observed 

particles (whose origin is still an unsettled subject of scientific debate) with 

abundances affected by spallation and ionization losses. Also it was shown that the 

mass fraction for one even-Z element with Z ≥ 6 from CRs is 

( ) WRiRSGii XXX ,, 1 −+= . 

We have here a different contribution to CRs abundance of stars that explode as 

supernova in RSG state or in WR state,  factor being approximately equal to 2/3. 

Also, ionization loss is responsible for the underabundance in the observed CR 

elements with FIP ≥ 10 eV (the first ionization potential). We can consider Si as 
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reference element for overabundance of elements with FIP ≤ 10 eV (Silberberg and 

Tsao 1990). The FIP correction factor will be, in this case, 4.0088 ÷ 4.878. In this 

way, we can see that the elements with FIP less than 10 eV have a mass fraction larger 

than the elements with FIP greater than 10 eV (and relative to Si), by a factor of  4. 

This happens to be exactly 2
injectionZ , the initial degree of ionization squared. 

Therefore, cosmic ray particles of an element with an initial degree of ionization of 
2
injectionZ  are more likely to be injected by a factor of 4. The FIP effect is discussed 

also by Rice et al. (2000, 2001) which suggested that, before the injection at the 

terminal shock, the pickup ions are preaccelerated via other shocks (e.g., as in the case 

of the Solar plasma physics, interplanetary shocks). The other proposal is that the 

particle acceleration takes place directly at the terminal shock by “shock surfing” 

(Zank et al. 1996). 

After introducing also the spallation correction of the mass fractions in the 

massive stars atmospheres (Tsao et al. 1998) we still remain with a difference between 

the abundance in massive star winds corrected for all above effects and the observed 

CRs: ( ) ( ) windcorrected
Hei

CRsobserved
Hei XXfXX // = , where 

 ( ) ik
Hei ZZf /= . (3) 

The ik  values can be seen in Table 1. 

Table 1 

Values of ki for even-Z elements in the case  = 2/3. 
The radiative acceleration correction factor is f from (3)  

Element i Z ki 

H 1 - 
C 6 0.876  0.022 
O 8 0.998  0.0265 
Ne 10 1.145  0.022 
Mg 12  1 
Si 14  1 
Fe 26  1 

 

Now we can wonder wherefrom this factor is coming. We will see that in a 

radiative instability (Owocki 1994), thermal instability (Alfvén waves induced – 

Gonçalves et al. 1998), forward (Lucy 1982) or reverse (Moffat 1994) shocks in the 

wind, that are driving turbulence, it appears a phase space separation. Also, in a 

radiative accelerated wind (CAK theory – Castor et al. 1975; MCAK theory – 

Pauldrach et al. 1986; etc.), the ions are differently accelerated in function of the 

resonant line absorbtions of photons.  
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2.  WOLF-RAYET  (WR)  CLUMPED  WIND  MODELS 

Spherically-symmetric homogeneous wind models predict IR-fluxes smaller 

than the observed ones, and, in many cases, smaller than the observed fluxes of HeI 

lines if matter density is calibrated through the observed radio-fluxes (Nugis 1994). 

These discrepancies can be removed by clumped wind models. 

For WR stars there exists also a serious momentum problem, the mass-loss rates 

for these stars, determined from radio-fluxes, exceed in some cases 30–50 times the 

single scattering limit L / c / v  (Nugis 1994). The clumpy wind could lead to a 

decrease in the estimate of the mass-loss rates by a factor  3 compared to 

homogeneous winds of the same free-free or subordinate line flux (Moffat 1994). 

Observations have proven that density inhomogeneities exist in the wind of WR 

stars (Moffat et al. 1988). The spectra of WR stars are dominated by broad emission 

lines of helium, with lines of nitrogen in stars of the WN sequence, or carbon and 

oxygen in stars of the WC/WO sequence. Lépine et al. (1999) studied the line-profile 

variations (LPVs), by high-resolution spectroscopy, in the HeII 5411 emission line of 

four WR stars of the WN sequence (HD 96548: WR 40, HD 191765: WR 134, HD 

192163: WR 136, HD 193077: WR 138) and in the CIII 5696 emission line of five 

WR stars of the WC sequence (HD 164270: WR 103, HD 165763: WR 111, HD 

192103: WR 135, HD 192641: WR 137, HD 193793: WR 140). The LPVs present 

systematic patterns: they all consist of a number of relatively narrow emission 

subpeaks that tend to move from the line centers toward the line edges. Lépine et al. 

(1999) introduced a phenomenological model that depicts WR winds as being made 

up of a large number of randomly distributed, radially propagating, discrete wind 

emission elements (DWEEs). This model was used to simulate LPVs patterns in 

emission lines from a clumped wind. They analyzed the general properties of the LPV 

patterns with the help of the multiscale, wavelet method. Lépine et al. (1999) 

investigated the effects on the LPVs of the local velocity gradients, optical depths, 

various numbers of discrete wind elements, a statistical distribution in the line flux 

from individual elements, and, also, how the LPV patterns are affected by the velocity 

structure of the wind and by the extension of the line-emission region (LER). They 

found that a large number ( 410 ) of DWEEs must be used to account for the LPV, 

that the mean duration of subpeak events, interpreted as the crossing time of DWEEs 

through the LER, is consistent with a relatively thin LER. As a consequence, the large 

emission-line broadening cannot be accounted for the systematic radial velocity 

gradient from the accelerating wind. Rather, emission-line broadening must be 

dominated by the large “turbulent” velocity dispersion suggested by the LPV patterns. 

Grosdidier et al. (1997) observed the clumped structure of the ejection-type M1-

67 nebula that surounds the WR 124 star (see the image in H of M1-67 taken with 

HST-WFPC2; Grosdidier et al. (1998). The clumped structure of the ejections of WR 

124 stellar object is visible in the image). The kinematics of the same nebula was 

studied with the aid of a scanning Fabry-Perot interferometer in combination with a 
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two-dimensional detector at Université Laval. In this way it was obtained a high 

resolution velocity field map (see the smoothed velocity map for heliocentric radial 

velocities of the “red” component of M1-67 taken with the Fabry-Perot interferometer 

of the Canada-France-Hawaii Telescope MOS/SIS (Grosdidier et al. 1998). The phase 

space velocity dispersion in the ejections of WR 124 stellar object is visible in the 

image); (Grosdidier et al. 1997). On the HST-WFPC2 image of M1-67 was done a 

structure function analysis, with the help of two-dimensional wavelets (to isolate 

stochastic structures of different characteristic size), being identified the self-similarity 

(fractality) in the fields of increments. 

2.1.  THE  STRUCTURE  FUNCTION  ANALYSIS 

To analyze the phase-space properties of discrete wind emission elements from 

nebulae around massive stars, the wavelet method can be used to perform the structure 

function analysis (Muzy et al. 1993). The image will be considered as a 2-dimensional 

function f. The field of increments of f  over a projected spatial distance r  at the 

pixel ),( yx : ]2/),[(]2/),[()],(;[ RR −−+= yxfyxfyxrf , by the continuous 

wavelet transform, )( fT , is 

)],(;)[()],(;)[()],(;[ 2 yxrfryxrfTyxrf r= −
 , where R is a two-

dimensional increment vector of length r,  denotes a convolution, and r  is the 

analyzing wavelet at the spatial scale r (Muzy et al. 1993). The so-called mother-

wavelet, , is the two-dimensional “Mexican hat” (the second derivative of 

]2/)(exp[ 22 yx +−  and ( ) ( )ryrxyxr /,/, = ; Farge 1992). A mother-wavelet 

function must be such that it has zero mean: 


−
= 0d)( rr . Furthermore, it must be 

localized in space (Lépine and Moffat 1999): 

 


−
= Crr d)]([ 2 . (7) 

Because the Mexican hat wavelet is orthogonal to polynomials of orders 0 and 1, 

the wavelet transform is insensitive to linear trends, hence linear nonstationary 

components, in the signal (or image). 

The statistical moments of 
p

yxrf )],(;[  (the two-point correlation function 

known as “structure function of order p”) can be estimated through those of 
p

yxrfT )],(,)[( , by averaging over   yxyxrfTCrf
pp

dd)],(;)[()( , 

where C is the constant that can be determined from (7). We can use scaling laws of 

the form (Grosdidier et al. 2001): 
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 )()( pp
rrf  . (9) 

By definition, 0)0( =  and )( p  is a smooth, differentiable, monotonically 

nondecreasing, concave function of p  (if the signal has absolute bounds), no matter 

how rough the data are. Continuous signals satisfy rrf
p

 )( , hence (p)  p. 

Processes with (p)  p are called “monoaffine” (affine) or “monofractal”, whereas 

processes with variable (p)/p are called “non-affine” (in particular “multiaffine” or 

“multifractal”). 

Doing the structure function analysis of the velocity field on M1-67, Grosdidier 

et al. found (1)  0.48–0.49 and (2)  0.90–0.91. 

In the context of the “universal multifractals” (Schertzer and Lovejoy 1987) the 

multifractals are the result of multiplicative cascades. A continuous-scale limit of such 

processes lead to the family of log-infinitely divisible distributions that have a 

Gaussian or Lévy stable generator. For universal multifractals we have: 

 
,1,ln)1()(

;1),)(1/()1()(

1

1

=−=

−−+= 

pCpp

ppCpp
 (10) 

where 1C  ≤ 2 is an intermittency parameter and 0 <  < 2 is the Lévy tail index. 

 

Fig.1 – Velocity structure function analysis of M1-67. The corresponding (p) function (dots) proves 

the multiaffinity of the velocity field in the nebula. The solid curve is a universal multifractal fit 
(Grosdidier et al. 2001). 

For testing the universal multifractal behavior it can be used the “double trace 

moment” (DTM) method (Lavallée et al. 1991). Through DTM, Grosdidier et al. were 
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able to estimate the value 91.1  and, after that, through least-squares method, the 

value of 01.004.01 C  for the particular case of M1-67 nebula (see Fig. 1). 

2.2.  TURBULENCE 

Now, knowing the values of (p) for different values of p, we have the scaling 

behavior (9) for 
( )pr . 

Turbulence is a form of dissipation in which a cascading process normally 

transfers energy from the larger to smaller eddy scales (or sometimes the reverse). 

Depending on the physical constraints during the transfer, different scaling laws may 

result (Moffat 1994). 

The Navier-Stokes equations are invariant under the rescaling 1−→ xx , 
H−→ , and 1−→ Htt (Sylvestre et al. 1999). For example, assuming that , the 

energy flux to smaller scales, is a scale-invariant quantity, it is found that H = 1/3, and 

dimensional analysis leads to the scaling law E(k)  3/5−k  for the energy density in 

the momentum space. In terms of Elssaser variables, eddies fall into two classes 

depending on their direction of propagation along the magnetic field lines: interactions 

between eddies belonging to different classes are less likely, thus weakening the 

energy transfer (Iroshnikov 1963; Kraichnan 1965). Consequently, the characteristic 

interaction time a
Aeddy )/(  , where A  represents the characteristic time for Alfvén 

waves, and a is some positive constant (Politano and Pouquet 1995). The scaling 

relation becomes: )3/(21)( +−− akkE , with 1=a  corresponding to Iroshnikov-

Kraichnan theory. 

It is found experimentally that in hydrodynamic media the Kolmogorov scaling 

law is generally not respected for individual realizations, and even in estimates of 

ensemble average the exponent differs from 5/3. The discrepancy can be attributed to 

intermittency (fluctuations in  due to small-scale non-linear structures). 

From the scaling behavior via the structure function analysis we can obtain the 

power spectrum estimation as a function of the modulus of the wave vector k. 

Explicitly, ( ) ( )1+− kkE , where  is the scaling exponent, or the spectral slope. 

For Kolmogorov scaling, 3/1=H , 3/51 =+ . The invariant at the rescaling 

power, H, for H = (q)/q with q a specified p value in (10), has the expression 

1/)1(2/ 1
1 −−+= −qCH . When we have a continuous signal ( ( ) rrf  ) 

with, e.g., a Kolmogorov scaling law 3/1=H , it results that H = (1)/1 = (1), and, 

knowing that 3/51 =+ , we obtain 

 ( ) 2/1 ==H . (14) 
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If q = 2 and  > 1 (Sylvestre et al. 1999): 

 )1/()12(2/ 1
1 −−+= −CH . (15) 

For q = 1 and (1)  0.48–0.49 (Grosdidier et al. 2001) and H = (1)/1, it results 

from (14) that H  1/2 and 2~)( −kkE . For q = 2 (in (15)) and (2)  0.9–0.91 

(Grosdidier et al. 2001), H = (2)/2 and at (1)  0.48–0.49, it results that 
9.1~)( −kkE , suggesting that the dynamics is essentially shock dominated (for which 

2~)( −kkE ). The dynamics on the case of M1-67 nebula is possible to be shock 

dominated (“saw tooth” turbulence) taking in account that WR 124 is a component in 

a binary system (HD 156327) (van der Hucht 2001), where the companion of the WR 

star is a B0III-I spectral type star. 

The significance of each of the three universality parameters on the multifractal 

field can be described as follows: 

- 1C  corresponds to the codimension of the mean field, and thus distinguishes 

between a field whose mean is dominated by a few localized peaks (large 1C ), and 

one with a mean dominated by a larger proportion of its surface (small 1C ; for non-

fractal such as white noise, 1C  = 0); 

- H is a measure of the degree of non-conservation of the field, or qualitatively 

a measure of its smoothness (large values of H corresponding to smoother fields). For 

example, in usual hydrodynamic turbulence the energy flux to smaller scales is 

conserved (H = 0), whereas the velocity shears have the Kolmogorov value H = 1/3; 

-  is the degree of multifractality (a measure of the deviation from the 

monofractal case). As  is the Lévy index of the multifractal generator, we have the 

restriction 0 ≤  ≤ 2, with  = 0 and  = 2 corresponding to monofractal ( model) 

and log-normal models, respectively. 

Averaging the universal parameters over seven bipolar nebulae (Sylvestre et al. 

1999) - GGD 18, V380 Orionis, LkH 101/NGC 1579, LkH 233, PV Cephei, V645 

Cygni (GL 2789), and V633 Cassiopeiae (LkH 198), Sylvestre et al. obtained:  = 

1.96 ± 0.02; 1C  = 0.04 ± 0.02; H = 0.7 ± 0.2. At this H value corresponds a power 

spectrum E(k)  2/3−k , indicating that the turbulence present in those bipolar nebulae 

is compressible. The result of wavelet analysis on the cloudlets from GMC L1551 

gave a fractal dimension D = 2.35 ± 0.01 (Moffat et al. 1994a), comparable with the 

one in the WR 135 (a WR star without companion and of WC9d spectral type) nebula, 

D = 2.32 ± 0.07 (Moffat 1994). This is actually the fractal dimension that results from 

wavelet and structure function analysis on all compressible turbulence-dominated 

phenomena. 

The observed scaling and mass-spectrum laws strongly imply that, in general, in 

the WR star without companion case, we have anisotropic, supersonic, compressible 
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turbulence, which increases outwards in the wind. Still, the re-arrangement of single 

scattering electrons into clumps cannot explain the observed polarization variability, 

unless the clumping occurs deep in the wind, close to its point of origin (Moffat 1994). 

2.3.  SELF-SIMILAR  STRUCTURES 

Until now we made estimations for the turbulence type, for the multifractality, 

and we saw that we must have “clumps” (“blobs”) in the wind of WR stars. What we 

cannot tell yet is how extended are these clumps for different distances from the base 

of the wind. We can find a solution to this problem by supposing that what we see is 

the result of one (or more) self-similar (monoaffine) structure(s) embedded in a 

random component. 

We can consider that the particles belong to two different distributions 1g  and 

2g , occupying the same sample volume V, each one with its own correlation function 

referred to that volume. We take 1g  to be the observer-homogeneous self-similar 

distribution and 2g  a random distribution. If we let eN  denote the number of objects 

(electrons) belonging to a cluster (blob), the number of blobs in the sample is then 

given by 21 / eeb NNn =  and the fraction ef  of electrons belonging to blobs is 

)/( 211 eeee NNNf += , where 1eN  and 2eN  are the total number of electrons in the 

two systems considered. If we further assume that the component g2 is distributed 

randomly, then 02221 == eeee  , and bbee  =11 . So, the correlation function is 

eeebb f = )/1( 2  (Calzetti et al. 1988). 

The addition of a random component to a pure fractal structure is therefore 

equivalent to multiplying the total system correlation function by 
2

ef < 1. This fact 

will have an effect on the general form of the two-point spatial correlation function: 

)()( rqrAr iii += − , where D−= 3  (3 is the space dimensionality and D the 

fractal dimension), and the function iq (r) should: have a negligible effect for the 

distances r for which 
−rAi > 1; satisfy the identity:  −=− SS R

i

R

i rrrqrrA
0

2

0

2 d)(d , 

which comes from the normalization condition  
SR

rrr
0

2d)(  (Calzetti et al. 1989); 

satisfy 1)( −rqi  for large r because the probability of finding a particle in the 

volume dV at the distance r from any given particle of the system must be 

nonnegative. In the above equations SR  is the radius of the sample. 
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Then, the two-point spatial correlation function becomes:   += −rAeeee , 

with bbeee AfA 2= , –1 <  < 1, and  = – 2
ef . When ef < 1, the differential density 

referred to electrons becomes (Calzetti et al. 1988): 

 ]1[)( 22
ebbeede frAfnrn −+= − . (21) 

Because we have two different physical systems superimposed, den (r) is not the 

actual differential density distribution seen by any observer belonging to the set, but 

should instead be interpreted as an average over all the density distributions seen by 

all the observers belonging to the system. It is important to emphasize that we have 

bbA   eeA , where −= Sbb RA )3/1(  (Calzetti et al. 1989). 

 
Fig.2 – The dependence of the correlation length 0r on the sample radius SR is given here for a pure 

fractal structure (K’/K = 0, line (a)) and for a self-similar structure embedded in a random component 

(K’/K  0) for some selected values of K’/K. For any given value of K’/K  0 and for large enough 

sample radii SR  the dependence of 0r  on SR is far from linear. Line (b) refers to a value of K’/K  = 

41016.2 − and line (c) to K’/K = 31037.1 −  (Calzetti et al. 1988). 

 

While bbA  is simply a function of the sample radius and of the fractal 

dimension, eeA  have to take into account the presence of the factor
2

ef . 

Since 1eN  and 2eN  have clearly different dependencies on the sample radius 
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SR : 3
2

3
1 ', SeSe RKNKRN == −  (Calzetti et al. 1988), where K and K’ are constants 

of proportionality, ef  itself will be a function of the sample radius SR  and , and we 

have 

 )'/()'/( 333 KKRKRRKKRKRf SSSSSe +=+= −−−− . (24) 

As consequence, the SR -dependence of eeA  will be not a simple power law, 

but: 

 22 )'/()3/1( KKRRKA SSee +−= −− . (25) 

We can define the quantity  /1
0 )( eeAr  that is the correlation length of the 

sample size (Einasto et al. 1986). The behavior of 0r  as function of SR  and of the 

value of the ratio K'/K is shown in Fig. 2. 

If we will be able to find a physical correlation between the structure function of 

order p for a multiaffine situation and the correlation function and length for a self-

similar structure embedded in a random component, we will be able to find the values 

taken by K'/K for particular cases of WR nebulas (for example, for M1-67). 

3.  NUMERICAL  MODEL 

3.1.  THE  RADIATIVE  ACCELERATION 

A different acceleration for the atomic species that can be found in the winds of 

WR stars (considered as having the same ionization degree) will give phase space 

dispersion. This means that the acceleration as function of the local bulk velocity for 

oxygen must be bigger that the one for carbon, and the carbon acceleration bigger that 

the one for helium. The above affirmation is sustained by the radiation-driven wind 

model (Cassinelli 1979) condition in which momentum is transferred from the 

radiation field to the gas by scattering of radiation in spectral lines. The radiative 

acceleration for a particular element found in the wind is given as the sum of all the 

radiative accelerations provided by single lines (Castor et al. 1975). In CAK (after 

Castor, Abbott and Klein) theory it is shown that this sum can be parameterized by 

 )()()]([ 41 tMTrrcNg CAKeffBthrad = − , (26) 

where −= kttMCAK )(  is the force multiplier and encapsulates the atomic physics of 

the line list for numerical computation, c –speed of light, N(r) – particle density at the 

distance r from the base of the wind, B  – Stefan-Boltzmann constant, effT  – the 
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effective temperature at the photospheric radius R . In our work the effective 

temperatures and also the terminal velocities v  and the stellar masses for Galactic 

WR stars were taken from García-Segura et al. (1996), from Crowther et al. (1995), 

and from van der Hucht (2001) (from where we are making also a selection for WR 

stars without companion after their spectral type). In the expression of the force 

multiplier the constants k and  represent the number of scattering lines and the ratio 

of weak to strong lines, respectively (Abbott 1980) and, for computational purposes, 

were taken from Pauldrach et al. (1986). The depth parameter t is defined by ( thv  is 

the thermal velocity of the carbon ion): 

 1)d/d( −= rvvt thTh . (27) 

The Thompson total cross section for scattering of radiation has the expression 

 ( )  ][1065.6/
3

8 225222 cmcme eTh
−==


 . (28) 

The radiative acceleration in the equation (26) is written in the isothermal case. 

A more accurate radiative acceleration takes into account a temperature distribution 

for a spherically grey atmosphere in radiative equilibrium (Milne-Eddington 

temperature distribution) (Lucy et al. 1993): 

 ( ) 







+= ~

2

3
2

2

1 44 WTrT eff , (29) 

where: 

 






















−−= 

2

11
2

1

r

R
W , (30) 

and the optical depth: 

 ( )( )


=
r

eff drrRr
2

/~  . (31) 

The reference radius is chosen so that: 

 ( ) 3/2~ == Rr . (32) 

When the stellar luminosity L is not r dependent, the scattering coefficient eff  

will be: 
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dx
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w

L

GMc
eff 


 21

4
. (33) 

In (33) G is the gravitational constant, M, the stellar mass, w = v/ v , x = cR /r 

( cR  is the core radius within which the star is essentially in hydrostatic equilibrium), 

( )2/ escvv=  (at r = cR  the velocity is equal with the escape velocity, escv ). 

The empirical formula which was used in CAK theory (Castor et al. 1975) for 

correlating v  and escv  is: 

 ( ) −= vvesc  /1 . (34) 

In our model we don’t find useful to take a T(r) distribution, the radiative 

acceleration from (26) being taken in the isothermal approximation. This is because 

the particles are beginning to be injected in the supernova shock very close to the 

stellar surface, and we are interested how those particles behave, before injection, till 

one or two stellar radii distance in the atmosphere, and if there appears a phase space 

separation as function of their type. Because is essential what happens close to the 

photosphere, we can’t work in the radial streaming approximation for the photons that 

drive the wind (Abbott 1980), by using instead of (27) the “exact” depth parameter 

(Pauldrach et al. 1986): 

 
( )

( )( ) ( )drdvrv

drdvt
tex

//1

/
22  +−

= , (35) 

which leads to the improved force multiplier: 

 ( ) 
−

=
1

21

2





dtMM exCAK , (36) 

(where  is the cosine of the angle between the photon direction and the outward 

normal on the spherical surface element, and ( )2/1 rR −= ) or explicitly gives: 

 ( ) ( )
( )( ) ( )

( ) 
 










 +−

−
=
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//1
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d

drdv

drdvrv
tMrdrdvvtM CAK . (37) 

3.2  VELOCITY AND ACCELERATION LAWS 

In the previous section we said that in order to have a phase space dispersion we 
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must first have: ( ) ( ) ( )HeHeCCOO vavava  . 

The most popular velocity law (so-called -law – Castor et al. 1979) which 

describes the bulk motion of the accelerated bulk material is: 

 ( ) ( )rRvrv /1  −= . (38) 

In an approximation of point source stars, the CAK theory predicts a velocity 

law with  = 0.5. When are considered also the finite disk effects, the CAK theory 

yields  = 0.8 (Friend et al. 1986). Puls (1996) successfully used a value of  = 1 for 

the prediction of OB stars mass loss. Still, observations of LPV subpeaks in WR 

winds, suggested much larger values of  (Robert 1994), the spectral analysis of WR 

spectra with a clumped wind model (Schmutz 1997) being consistent with these values 

of   4-8. 

The acceleration law that follows from (38) is: 

 ( ) ( )
1222

1//

−
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==
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R

r

R

R

v
drdvvdtdvra , (39) 

or, as function of the local bulk wind velocity: 
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v

R

v
va .   (40) 

In Fig. 3 is illustrated the a(r) and a(v) behavior for different values of the 

parameter  (Lépine et al. 1999). Apart from other important remarks that can be 

made related to these representations, it can be seen that, for the same particle 

velocities we have a spatial separation (into blobs?) and a constant a(v). For our 

purposes it is also useful to see that, for a star with a specified photospheric radius R*, 

at a constant r and different  values we have a phase space dispersion due to different 

particle velocities. 

If the blobs follow a velocity law (38) the time spent between = Rrx /00  and x = r 

/ R  is: 

 
−












−=

x

x x
dx

v

R
T

0

1
1



, (41) 

so that most time is spent near 0x  for likely  values. For 0x  = 1, T is infinite (unless 

<1) for all x. Statistically speaking, this means that for the (38), -law blobs should 

never be observed other than at x = 1. In addition, any v(r) law with v = 0 at x = 1 

requires infinite wind density for mass flow continuity (Brown et al. 1995). This 
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difficulty can be avoided by allowance for an initial velocity v(x = 1) = thv  =  v , 

where 

 

 
Fig. 3 – Illustration of the -law. Left panel: Dimensionless acceleration plotted as function of radius; 

Right panel: The -law in velocity space (it can be seen the same general shape for the  values). 

(Lépine et al. 1999) 

 

thv  is the thermal velocity of the carbon ion near the “dynamical photosphere”. Then, 

the modified -law becomes: 

 ( ) ( )( ) 
 rRvrv /11  −−+= . (42) 

At the same  values the acceleration in the first two stellar atmosphere radius 

distances is more efficient for small  values. The conclusions that follows from Fig. 3 

and Fig. 4 is that we can have a phase space separation for different atomic species 

that are present in the WR wind and, if we want to have ( ) ( ) ( )HeHeCCOO rarara  , 

we must have first HeCO   , which means that  (see Fig. 3) we need that 

( ) ( ) ( )HeHeCCOO vavava   at the same velocity value. 

3.3  NUMERICAL MODEL EQUATIONS 

For a phase space separation we take the factor f from the equation (3) equal 

with the ratio of accelerations (see eq. (40)): 
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, (43) 
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, (44) 

where Ck  = 0.764 ± 0.022 and Ok  = 0.984 ± 0.0265 (see table 1) and the He velocity 

is a (42) -law: 

 ( ) ( )( ) He
HeHeHe rRvrv


 /11  −−+= . (45) 

In (43), (44), and (45),  will take values between 4 and 8 (Schmutz 1997) (with 

the specification that HeCO   . The photospheric radius will be determined 

from the relation: 

 ( )effBnuc TLR 4/= , (46) 

with effT  the effective photospheric temperature, B  - the Stefan-Boltzmann 

constant, and nucL  - the nuclear luminosity of the star, given by an empirical form of 

the mass-luminosity relation (Langer 1989a): 

 ( ) ( ) ( ) 2210 /log/log/log  ++= MMaMMaaLLnuc , (47) 

where the fitting coefficients found by Heger et al. (1996) for nucL  are 0a  = 

2.507301, 1a  = 3.237961, 2a  = -0.610150, and a standard deviation of 0.003188. 

(43), (44), and (45) will be the first three equations from a sistem of seven with seven 

variables. We will try to prove that at any given r, 30M ≤ M ≤ 50M , and  (from the 

non-zero initial velocity condition in (42)) we are having phase space dispersion, 

meaning a convergence for the system of equations. The variables of the sistem are: 

- The distances at which the particles reach in the wind before their injection in the 

supernova shock. Assuming that C, O and He (the choice of these atomic species will 
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be later explained) are becoming wind particles at the same moment of time and that 

are simultaneously injected in the supernova shock. The last approximation is possible 

because the bulk velocity in the wind is in the best case 0.1 from the shock velocity. 

So, the quantities that are to be determined are ( ) HeC rrar −= 1  and 

( ) HeO rrbr −= 2  (in (45) will be made the substitution arr CHe −= ), where Cr   

r will be the distance at which is reaching the carbon in the wind and it will be given 

(through an iteration loop) values from 1 R  to 3 R  with the step smaller than the 

Alfvénic damping lengths. The Alfvénic damping lengths can be understood as limits 

to the size of the formed blobs (self-similar domains) through thermal instability due 

to Alfvén waves (Gonçalves et al. 1998). Gonçalves et al. found that the blob 

diameters must be 
65 104.1103  blobd  cm. Consequently, our correlation length 

( 0r ) and our iteration step ( CCC rrr +→ ) will be chosen in the interval defined by 

2/0 blobdr  , and 
55 107105.1  Cr cm, respectively; 

- Particle densities, ( )OO rN  and ( )CC rN  in the volume of the sample of radius 

iSR , . The sample volume will be considered spherical and its radius equal with the 

distance from the base of the wind at which the particle i (C, O or He) is injected in 

the supernova shock, iSi Rr , . Also, the correlation length iSRr ,0  ; 

- The velocities ( )OO rv , ( )CC rv  and ( )HeHe rv . 

Now, the differential wind equation in the assumptions made by Biermann et al. 

(1993) is: 

 
( ) radg

xd

dy

y
−=














−

/1

1
1

2

3
, (48) 

with x the dimensionless length, y the velocity and radg  the radiative acceleration (see 

(26)) in the radial streaming approximation (the results for an radiative acceleration 
with improved force multiplier (37) and exact depth parameter (35) will be presented 
in another paper). 

Our “reduced” depth parameter will be: 

 ( )tdrdvt /
~
= , (49) 

with t from (27). So, the differential wind equation will look like: 

 
( ) dy

dx
g

xd

dy

y
rad

~

/1

1
1

2

3
−=














− . (50) 

After doing the integration we find that: 
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   ( ) ( )xxxxgyy rad +−−=− lnln~/12 .    (51)  

In the equation (51) the dimensionless value of x  r/[cm]. Re-writing (51) for i 

element (O, C, or He) at x = inr  and x = finr  ( finr = inr + r; r ≤ 0r = 5107 ) 

distances, corresponding to iny  iniv ,  and finy  finiv , , respectively, and making their 

substraction we get: 

( )inifiniiniinifinifiniinifiniradi
inifini

inifini rrrrrrrrg
vv

vv ,,,,,,,,,
,,

2
,

2
, lnlnlnln~11

−++−−−=+−− .

  (52) 

 

 

Fig.4 – Behavior of wind acceleration  = d(ln v)/d(ln r) as a function of distance xR for various 

values of parameters ,  (the latter specified in the key) in wind velocity law 

( ) ( )





















−−+= 






r

R
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. (Brown et al. 1995) 

 

Let now consider the case of two WR stars of equal masses, terminal velocities, 
and effective temperatures, one in WC pre-supernova sequence and the other in WO 
pre-supernova sequence. For this purpose we are using real stellar data from van der 
Hucht (2001), García-Segura et al. (1996), and Crowther et al. (1995). We suppose 
that in the wind of the WR star of WC spectral type is no O, but just He and C, while 
in the wind of the WR star of WO spectral type is no C (just He and O). This is 
allowed knowing that a WR star passes through both, WC and WO sequences, 
excepting the case when the star explodes as supernova before that, but even so, due to 
the fact that we are observing in CRs the contribution of all (and is no reason to think 
that the number of WR stars which explode in WC sequence is larger than for the ones 
that explode in WN sequence) WR stars as a unique spectral slope, this is allowed. 
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At a Cr  for the WC sequence star we compute the velocity ( )CC rv  (eq. (52)). 

With this velocity we “go” to the WO sequence star ( ( ) ( )CCOO rvrv ='' ) and we 

compute '
Or . Then, having '

Or , we are “coming back” at the WC sequence star 

(
'

OO rr = ) and we compute the velocity ( )OO rv . In this way, we will be able to write 

the equations for a WR star in the intermediary sequence WC/WO, in whose wind we 

find He, C and, also, O: 

 ( )inCCinCinCCCinCCradC
inCC

inCC rrrrrrrrg
vv

vv ,,,,,
,

2
,

2 lnlnlnln~11
−++−−−=+−− , 

  (53) 

 ( )inOOinOinOOOinOOradO
inOO

inOO rrrrrrrrg
vv

vv ,,,,,
,

2
,

2 lnlnlnln~11
−++−−−=+−− , 

  (54) 

 ( )inHeHeinHeinHeHeHeinHeHeradHe
inHeHe

inHeHe rrrrrrrrg
vv

vv ,,,,,
,

2
,

2 lnlnlnln~11
−++−−−=+−− , 

  (55) 

where we consider that all the wind particles are originating at the stellar surface: 

=== Rrrr inHeinCinO 1,,, . 

The fourth, the fifth, and the sixth equations of our system of seven equations 

will be: 

 ( ) ( ) ( ) ( ) inOCinOinOCCinOCradO
inOO

inOO rbrrrbrbrrbrg
vv

vv ,,,,,
,

2
,

2 lnlnlnln~11
−+++++−−+−=+−− , 

 (56) 

  inCCinCinCCCinCCradC
inCC

inCC rrrrrrrrg
vv

vv ,,,,,
,

2
,

2 lnlnlnln~11
−++−−−=+−− , 

  (57) 

 

( ) ( ) ( ) ( ) inHeCinHeinHeCCinHeCradHe
inHeHe

inHeHe rarrrararrarg
vv

vv ,,,,,
,

2
,

2 lnlnlnln~11 −−++−−−−−−=+−−

  (58) 
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where arr CHe −=  and brr CO += . In the eq. (53) and (57) for the WC sequence 

WR star (see also (26) and (27)): 

 
( ) ( )( )

( ) 
 thTheffBTh

HeHeCC
radC vkT

rNrNc
g 4

,

1~

+
= . (59) 

Also, in (54) and (56) (for the WO sequence WR star): 

 
( ) ( )( )

( ) 
 thTheffBTh

HeHeOO
radO vkT

rNrNc
g 4

,

1~

+
= , (60) 

and, in (55) and (58) (for the WC/WO sequence WR star): 

 
( ) ( ) ( )( )

( ) 
 thTheffBTh

HeHeCCOO
radHe vkT

rNrNrNc
g 4

,

1~

++
= . (61) 

In the approximation that all the WR wind particles are at least one time ionized, 

let us define a self-similar particle distribution (the ionic density in the in blobs). For 

this we must keep in mind (as seen in the previous sections) that the structure function 

study of wavelet images of the WR surrounding nebula is showing that there we have 

self-similar structures and that the power law of the energy dissipation is that of a 

compressible turbulence. The distribution of the number of structures (blobs), N, with 

the number of free electrons in a blob, eN , reads (Richardson et al. 1996): 

 
( ) 
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eeee
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1
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01
, (62) 

with 0N  - the total number of blobs at any time, min,eN  and max,eN  - the minimum 

and, respectively, the  maximum number of free electrons contained in any blob: 

max,eN  = 10 min,eN , 
46

max, 102=eN  (Richardson et al. 1996). Also,  = n - D (n - 

the space dimensionality = 3; D - the fractal dimension = 2.32). 

In our case: 

 ( ) ( )
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 ( ) ( )
( ) ( ) ( )( )
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where the equations (63) and (64) are for our WR star in WC sequence and, 

respectively, in WO sequence, when we consider that in the wind the spatial 

separation of C from He (WC case) and of O from He (WO case) is giving an self-

similar particle distribution in blobs (each particle type is forming its own self-similar 

like blob structures). In the right side of (63) and (64), ( )CC rN ,0 , ( )OO rN ,0 , 

( )HeHe rN ,0  are the average C, O and He densities, and we can find them from the 

matter conservation law: 

 ( ) esciiii vrrM 24 = . (65) 

Then, the average density ( )ii r  (in 
3/ cmg ) for i wind element over the sample 

(blob) volume: 

 ( ) ( )esciiii vrMr 24/  = , (66) 

and if we consider that the total mass loss, ( )jXM  (j  [1, i]) of each stellar surface 

element isotope (Woosley et al. 1995) (assuming that the surface mass fraction jX  is 

having a small time dependency - in the supernova deflagration time scale, 

comparatively with the stellar age): 

 ( ) ( ) MXMtXXM surfjsurfjj


,, = , (67) 

results that: 

 ( ) ( ) ( )esciiii vrXMr 24/  = . (68) 

In (68),  =
=

i

j ji XX
1

and the mass loss for Wolf-Rayet hydrogen depleted 

WC/WO pre-supernova stars with initial masses between 30-35 M and 50 M is 

described through the empirical formula (Langer 1989b and Woosley et al. 1993): 

 ( ) ]/[/10
6.27 yrMMMM 

− = . (69) 

The jX  surface mass fractions are the Langer’s et al. stellar evolution 

computation results (Langer et al. 1995) (see table 2). 

Table 2 

Surface mass fractions of various isotopes in stellar evolution models in the initial mass range           
30M ≤ M ≤ 50M at the pre-SN state. The pre-SN configuration is also indicated, where RSG means 

red supergiant and WC stands for Wolf-Rayet star of the carbon sequence. (Langer et al. 1995) 
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Isotop 
30M 

RSG → WC 

40M 

WC 

50M 

WC 

H1  
11016.6 −  0.0 0.0 

He4  11065.3 −  11022.7 −  11049.1 −  

C12  31001.2 −  11007.2 −  11094.4 −  

C13  41039.1 −  71070.4 −  0.0 

N14  31083.4 −  31051.4 −  0.0 

N15  61062.1 −  0.0 0.0 

O16  31042.7 −  21081.4 −  11032.3 −  

O17  51095.6 −  61033.8 −  0.0 

O18  61022.8 −  41092.8 −  0.0 

 
Since the average particle number density: 

 ( ) ( ) ( ) ( )Hiiiiii mrmrrN  //,0 == , (70) 

where the mean molecular weight Hmm /  (with m , the average mass of the gas 

particle and 
2410673525.1 −=Hm [g], the mass of a hydrogen atom) and 

neuion    ( ion  and neu  are the mean molecular weights for the completely 

ionized and for completely neutral gas, respectively) (Carroll et al. 1996): 
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 (72) 

we will be able to write, with the help of eq. (68): 

 ( ) ( ) ( )Hesciiii mvrXMrN  2
,0 4/= . (73) 

Also, in (63) and (64): 

 ( ) ( ) ( ) ( )( )  ( )HeHeHeHeiiHeHeii rNrNrNrNrN ,0,0,0,0,0 1/ +=+ . (74) 

Observing from (73) that: 
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 ( ) ( ) ( ) ( )iHeHeiHeHeii mmXXrNrN /// ,0,0 = , (75) 

we find that: 

 ( ) ( ) ( ) ( )  ( )HeHeiHeHeiHeHeii rNmmXXrNrN ,0,0,0 1// +=+ , (76) 

where the values of iX  are the sum of the isotopic mass fraction from table 2 for C or 

O, and im  and Hem  are the atomic masses of i element and the atomic mass of He, 

respectively, expressed in grams. 

Now, if we consider that the free electrons in the WR wind are catched in the 

same instability driven turbulent general motion as the ions and that they have a self-

similar distribution in the blobs and a random distribution between blobs, we have 

from (21): 

 ( )   1,1 ,
2
,,

2
, −+=

−
eieiibbieieie ffrAfNrN


, (77) 

with (see (24)): 
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and (see (25)): 
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, (80) 

we get a full description of the densities that enter in the right side of (63) and (64) by 

making the (76) and (77), and (from (73)): 

 ( )
HescHe

He
HeHe

mvr

XM
rN

 2,0
4


= , (81) 

substitutions. In the above equation escv  is given by (34). For eN  we take the average 

value between min,eN  and max,eN  over the volume of radius SiR , . 

After substitution, one last problem arises in (63) and (64) by the apparition of 
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the ( )iKK /'  ratios. This can be solved considering that the observed blobs are having 

a universal fractal distribution where the fractal behavior (p) for the p order (which 

can be regarded as a spatial scaling of the analyzed image) of the structure function. 

Because also the correlation length 0,ir  for the i element in blobs is (like (p) but with 

a much smaller generality) a measure of fractality in the system and because SiR ,  is 

for certain a spatial scaling measure, we postulate that (see also the similarity between 

Fig. 1 and Fig. 2) in three dimensional space: 

 ( ) Sii Rrpp ,0, //  , (82) 

and, in a particular case: 

 ( ) Sii Rrpp ,0, //  . (83) 

With 0,ir  from (80) and with (10) in (83) we find: 

 ( ) ( ) ( )( ) 







−+−=

−−
2, /3/11/'


  ppRKK Sii . (84) 

Subtracting (64) from (63) we get the seventh equation of our system of 

equations for a WC/WO Wolf-Rayet star without companion.  

4.  RESULTS AND CONCLUSIONS 

Even if it is a little disappointing for the reader, our primal purpose was to show 

that, the system of equations constructed on the above assumptions converges to a 

solution for any value of the r  Cr  in the range 1-3 R . Our numerical code, made in 

IDL 5.2, was tested for convergence when we independently varied quantities like the 

stellar initial mass (30M ≤ M ≤ 50M; with the corresponding effective temperatures, 

terminal velocities, mass fractions, etc.), molecular weight ( neuion   ),  

( = vvth  ; 0.01 ≤  ≤ 0.1), or iteration step r   Cr  (when CCC rrr +→ ; 

55 107105.1  Cr ). Our unique model free parameter, p (0.1 < p ≤ 3), had also 

the not to be ignored purpose to enable a rescaling of our computational lattice in such 

a way that the sample radius, SiR , , never to touch the lattice border which would had 

meant a disaster (“explosion”) for the system variables. 

Indeed, the system converged in all the above situations, which meant that we 

had an pre-supernova phase space dispersion between C, O, and He in the wind, seen 

in the observed CRs through the factor  ( ) ik
Hei ZZ / , and this is done by the 
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assumption that, prior to the acceleration at the terminal shock, the ions are radiative 

accelerated. 
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