
 

 

RECURRENT POWER SERIES SOLUTION OF THE n-BODY 

PROBLEM ASSOCIATED TO A QUASIHOMOGENEOUSE 

POTENTIAL 
 

 

ÁRPÁD PÁL, FERENC SZENKOVITS 

 "Babes-Bolyai" University 

Faculty of Mathematics and Computer Science 

str. M. Kogalniceanu 1, 3400 Cluj-Napoca, Romania 

 

 
Abstract. Using Steffensen's method, a recurrent power series solution is given for the n-

body problem associated to a quasihomogeneous potential of form W = U + V, where U and 

V are homogeneous functions of degree -a and -b respectively, with 1  a  b. The 

application to numerical integration is also pointed out. 
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1. INTRODUCTION 

 

 In 1956-1957 a few articles have been published by Steffensen (1956a, 1956b, 

1957), describing the solution of both the restricted and the general three-body problem 

in term of power series in time. The method proposed by Steffensen is particularly well 

adopted to computers. The method is made practical by the introduction of a certain 

number of auxiliary dependent variables, wich transform the system of differential 

equations where all denominators have been remuved, as vell as the powers r3. 

Steffensen calls his systemof 'second degree', because in the final form, only products of 

two dependent variables appear. This form is particularly well-prepared for the 

substitution of power series and the identification of equal powers in t. In several of his 

papers Steffensen has also given convergence criteria for the series. The application of 

the series is particularly interesting because the square roots are completly avoided in 

the computations and the number of divisions is reduced to a minimum. The reason why 

the method  is so well adopted to automatic computers is that the calculation of all the 

coefficients of the power series is done in a recurrent way; for each order, the 

coefficients are functions of all the precedingly computed coefficients. 

 This method has been effectively used by several authors, such as Rabe (1961), 

Deprit (1965), Broucke (1971), Pál and Szenkovits (1996) for the numerical integration 

of the restricted three-body problem and the general n-body problem on computers, and 

it appears that the results are superior both in speed and in precision, to those obtained 

with most of the classical numerical integration methods. 

 The goal of this paper is to give the recurrent power series solution for the n-

body problem associated to a quasihomogeneous potential of form W = U + V, where U 

and V are homogeneous functions of degree -a and -b respectively, with 1  a  b. 
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2. THE n-BODY PROBLEM ASSOCIATED TO A QUASIHOMOGENEOUS 

POTENTIAL 

 

 The n-body problem associated to the quasihomogeneous potential can be 

formulated as follows (see Diacu, 1996). Consider n particles of masses mi > 0 in the 

Euclidean space E3, having coordinates qi = ( q q qi i i

1 2 3, , ), i = 1, 2, ..., n, in an inertial 

reference system. Let q = (q1, q2, ..., qn)  R3n be the configuration of the system of 

particles and define the quasihomogeneous potential W = U + V, where 

 

U : R3n \   R +, U(q) =   m m qi j

i j n

ij

a,
1  



 , 

V : R3n \   R +, V(q) =   m m qi j

i j n

ij

b,
1  



  

are homogeneous functions of degree -a and -b respectively, with 1  a  b. In these 

potentials qij = qi - qj is the Euclidean distance between particles i and j,  denotes the 

collision-ejection set 

 

  =  qq qi j
  1 i j n

U , 

 

and  are symmetric positive functions of the masses, i.e. such that  

(mi, mj) = (mj, mi) = ij > 0, and (mi, mj) =(mj, mi) = ij  > 0, for all 1  i < j  n. 

 The equations of motion are given by the system 

 

 


 ( ),

q p

p q



 





M

W

1

      (1) 

 

where M = diag(m1, m1, m1, m2, m2, m2, ..., mn, mn, mn),         q q q1 2, , ,K n  

is the gradient operator and p = M &q , p = (p1, p2, ..., pn)  R3n denotes the momentum of 

the system. In case a = b = 1 and (mi, mj) = (mi, mj) = (G/2) mimj, where G is the 

gravitational constant, we are in the classical Newtonian n-body problem. 

 

3. RECURRENT POWER SERIES SOLUTION 

 

 The equations of the motions (1) are equivalents with the next ones: 

 

   

m

a q b q

i i i

i ij ij

a

ij ij

b

j i

j
j i

n





q p

p q q



  









   




  2 2

1

,   i = 1, 2, ..., n  (2) 

 

 The central idea of Steffensen's method is to introduce auxiliary variables, wich 

help us to eliminate quantities q qij

a

ij

b 2 2,  from the denominators of the right hand side 

expressions in equations (2). Let it be: 
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a q

b q
i j n

ij ij

a

ij ij

b










  

 

 

2

2
1,     (3) 

 

Using these new variables introduced in (3), the equatios of mevement (2) have the new 

form 

  

m

a a b b

i i i

i ij ij ij ij j i

j
j i

n





q p

p q q



  







 



  
1

,   i = 1, 2, ..., n  (4) 

 

Equations (4) can be completed with the next relations betwen old and new variables: 

 

  q q

q a a a q

q b b b q

ij ij j i j i

ij ij ij ij

ij ij ij ij

  

 ( ) 

 ( ) 

  

  

  










q q q q

2

2

,  1  i < j  n    (5) 

 

Equations (4) and (5) constitute a differential system wich determine variables qi, pi, qij, 

aij, bij, 1  i < j  n. This system can not be integrated with exact methods. We can 

obtain the solutions of this system using power series: 

 

q Q p Pi ik

k

k

i ik

k

k

t t 










 1

1

1

1

, , 

      (6) 

q Q t a A t b B tij ijk

k

k

ij ijk

k

ij

k

ijk

k

k

  















  1

1

1

1

1

1

, , , 

where coefficients Qik, Pik  R3, Qijk, Aijk, Bijk  R, 1  i < j  n, k  1 will be 

determined. 

 Substituting the power series (6) in equations (4, 5) after identification of equal 

powers in t, one obtains the next recurrence relations, to determine the unknown 

coefficients: 

   

  

km

k a A b B

kQ Q qQ Q q

kQ A qQ A

i i k ik

i k ij ijp jq iq

p q k
p k

ij ijp jq iq

p q k
p k

j
j i

n

ij ij k ijp ij q

p q k
p k

jp ip j q i q

p q k
p k

ij ij k ijp

Q P

P Q Q Q Q

Q Q Q Q, ,

,

,

,..., ,...,

, ,

,..., ,...,

,





  


  





 

  


 

  





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










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1

1
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1
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1

1 1 1

1
2

1 1

1
1

1 1

 

 

 

ij q

p q k
p k

ijp ij q

p q k
p k

ij ij k ijp ij q

p q k
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ijp ij q
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a qA Q

kQ B qQ B b qB Q

,

,...,

,

,...,

, ,

,...,

,

,...,



  
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

  


 

  




  

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1
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1
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2
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  (7) 

 



 4 

Start coefficients Qi1, Pi1  R3, Qij1, Aij1, Bij1  R, 1  i < j  n are obtained from the 

initial conditions given for t = 0, qi0 = qi(0), pi0 = pi(0) R3, i = 1, 2, ..., n. These 

coefficients are: 

 

Qi1 = qi0, Pi1 = pi0, i = 1, 2, ..., n 

(8) 

Qij1  =  Qi1 - Qj1 , Aij1 = Qij

a

1

2 
  , Bij1 = Qij

b

1

2 
, 1  i < j  n. 

 

Start coefficients (8) calculated, one computes all coefficients of Taylor series (6), with 

the index k + 1, step by step using the recurent relations (7). 

 

5. APLICATIONS TO NUMERICAL INTEGRATION  

 

 This method  is well adopted to automatic computers, since calculation of all the 

coefficients of the power series is done in a recurrent way; for each order, the 

coefficients are functions of all the precedingly computed coefficients. In approximate 

numerical solutions the coefficients are calculated until an order N, suitable chosen. To 

verify computetional accuraty, one can uses the energy integral  

T(p(t)) - W(q(t)) = h 

where T : R3n  [0. +), T(p) = 1
2

1 2

1
mii

n 

 p i
is the kinetic energy and h is the energy 

constant; and the momentum integral 

 q ,p ci i

i

n



 
1

(constant). 
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