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A bstract . The two-hody problem corresponding to a gravitat lonal Iorce with 
a n iso t rop ic G is treated by means of perturba tion thcory. The integration of 
Newton-Eulcr equations shows that the perturbed orbit is of ellip ti c type, !ies 
in a fixed plane, and its sernimajor axis, eccentrieity, and argument of pericentre, 
obtained a s functions of the argument of latitude, undergo 2;:-periodic varlations. 
The nodal p eriod, determined with an accuracy of first order in a small parameter 
Ci a ri d th ir d order in ccccn triei ty , rcsults to bc short.er than the corresponding 
Keplerian pcriod. The problom approached here constitutes fi particular case of the 
v er y gene ra l two-body problern with cbanging equlvalent gravitatlonal para­
mct er . 

H ey lrords : cele st ial m echanlcs - equivalent gravitational parameter ­
ani sotropy of gra v it a t ion - orbital motion - perturbation theory. 

1. INTHODUCTION 

Consider a point mass 1n orhiting a point mass M at dis tance r under 
the only act ion of the gravitational iorce 

(1) 

An eventual an isotropy in the gravitational constant G : 

(2) 

and the po ssibility to detect it by laboratory exp eriments have been discus­
sed by Will (1971). In (2) Goo = Newtonian attracti on constant, c = speed 
of light, e < 0.015 (see Vinti, 1972), while V stands for the velocity of the 
laboratory system with respect to a so-called parametrized post-Newtonian 
(PPN) system. The quot ed pape rs identify pra ctically V with Sun's 
velocity relative to the Galaxy's centre . 

The two-body problem whi ch result s with the force (1) in whieh G 
has the expression (2) ' vas solve d by Vinti (1972) on the basis of a Binet-type 
equation. He constructed a fixed ellip se (which is no t an osculating one, and 
represents the solution of the homogeneous equ ation) to define orbital 
elements, and compared the motion corresponding to the general solution 
of the unhomogeneous Binet-type equation with the Keplerian motion 
obtained for E = O, especially as regards dynamic orbital parameters (truc 
longitude, anomalies), 
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Here we shall approach this problem in a perturbative manner. A 
comparison with Vinti's (1972) method and resul ts will be made in the last 
section of this paper. 

'Ve have to emphasize t he fa ct that this p roblern cons t itu tos a p ar­
ticular case of a much more general one: the two-body problem with 
changing equivalent gravitational parameter (see Mioc et al ., 198ti a ). 

2. EQUIVAI.ENT GHA\'ITATION,\L I'i\ILUlETEH 

The force (1) being cen tral , it is clea r tha t the mo tion of tn relative 
to M will be planar. Denote: ~ = angle betw een V aud orbit plane, 
V2 = vector resulting by projecting V onto orbi t pl ane, O= angle b e­
tween V2 and r , w= angle from V2 to the ascendingnode of the orbit (de­
fined with re spect to a fundamental plane). It re sults immediately 

0 = w + 11, (3) 

where ~ l, = argumen t of latitude. N otice that V2 is Iix ed in an inertial 
space (Vint i, 19 72), and the orbit plane is fixed, to o ; henee bo th V2 aud 
t he li ne of nodes keep their positions constant in the orbit plane; thus w 
is constant . 

Vin ti' s (19 72) geometric con siderations lead to 

G = Goo(l + a cos- el, (4) 

with a = .:; (V /C)2 CO S2~. Taking into aecount (1 ) - (4), the rela ti ve orbit 
of tn will b e describ ed by t he equa t ion 

(5 ) 

in which h = cons t ant angular m omentum, aud f1. has the exp ression 

f1. = H + JA2 + KB2 - LAB , (6) 
where we denoted : 

H = Goo(.Jl + tn) ; (7 ) 

J = aH cos2.1o, K = GH sin 2w, L = cH sin( 2w) ; (8) 

:- A = cos 'l.t, B = sin 'l.t. (9) 

One sees by (5) and (G) that this is a two-body problem in which the equi­
valent gravitational parameter f1. (see Mioc et al. , 1988 a) is variable. We 
shall treat this problem perturbati vely ; in other words, taking into account 
(5) and (6) , we shali consider that. in the r igh t -hand side of (5) the term 
- H/r 2 fea tures the eEfective Newtonian attraction , whi1e th e term 
(L A B - -I.A 2 - KB2)/r2 features a pertu rbing force duc to the anisotropy 
of G. That is why we use h erea tter a p er turba t ion t heo ry terminology. 
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3. EYOJ.UTlON OF TIIE ORDITAL ELEMENTS 

Since the perturbing force depends explicitly on 'Il, we study the 
motion on the basis of Newton-Euler equations written with respect to 
the argument of latitudc (e.g. Mioc and Radu, 1991; Mioc et al., 1992) : 

dp /du = 2(Z /B)1' 3T, 

dn/du = (Z/B)r3W /(pD), 

di/d1(' = (Z /H)r3AW/p, (10) 

(Z jB) (r3kBCW j(pD) + r 2T(r(q + A)jp + A) + r 2BS),dqjdu = 

3qBOWj(pD) + r 2T(r(k + B)jp + B)- r 2AS),dkjdu = (Z jB) (- r 

in which Z = (1 - r 20D./(Hp)1/2)-1, p = semilatus rectum, cu = argument 
of pericentre, e = eccentricity (q = e cos cu, k = e sin cu), n = longitude 
of ascending node, 'i = inclination (O = cosi, D = sini), while S, T, W= 
= radial, transverse, and binormal componenta of the perturbing accele­
ration, respectively. 

But tlie perturbing foree is radial; so 

S = (IAB - JA2 - KB2) jr2, T = O, W = O, (11) 

and the first thi ee equations (10) yield immediately 

(12) 

where subscrip ts refer to th e initial position u = 'Uo' Henee the orbit plana 
is fixed (this is natural since the iorce acting on m is central), and the semi­
latus rectum k eep s a consta nt value. 

By (12), Z = 1; with (11) the fourth and fifth equations (10) acquire 
tbe torr-

dq/du = (LAB2 - JA2B - KB 3) jH, (13) 

dk jdu = (JA 3 + KAB2 - LA 2B)/H. (14) 

Observe tbat equations (13) and (14) are no more coupled. Integrating 
them, the behaviour of 4. aud k in the interval l'U o, 'Il] is given respectively 
by 

(15) 

k = ko + (P - l' IJ) ,(3H), (16) 



68� v. Mine , C. l3Inga 4 

where we u sed the abbreviations 

Q = Q(u) = LB 3 + (J - Il) A 3 + 3 K A , (17) 

P = P (11) = LA 3 - (J - ]()B 3 + 3JB , (18) 

and Qo = Q(u o), P o = P(1lo)· It is easy to see that the expressions (15) and 
(16) are 2r.-periodic func t ions of 11. 

Let us now pass to more intui tive orbi tal elemen t s. Using the defi­
nitions of q and k, and expressions (15) - (18 ), t he n substit u t ing (8) and 
(9) into the res ults , we get (to first order in a) the behaviour of the eccen­
tricity : 

e = Co - a((1/2) 8in( (u + 1( 0)/2 - 2w + (U o) sin( (u - u o)/2 ) + 
+ (1/6 ) sin(3(11 + 1(0)/2 + 2w - CJ)o) sin(3(11 - 1(0)/2) ­

- cos(2w) sin(Cu + uo)/2 + (Uo) sin((u - 1( 0)/2 ) + 
(19) 

and that of the argument of pcriccntre : 

(U = (Uo - ( a / eo) ((1 /2) C08((1I + IloW!. - 2w + (Uo) sin(( u - u o)/2) ­

- (1/6) COS(3(11 + 1(0)/2 + 2w - (Uo) sin(3(u - u o)/2) ---, 

-� cos(2w) COS((11 + 1(0)/2 + (Uo) sin ((u - 1(0)/2) ­

- COS((11 + 1( 0)/2 - (Uo) sin((u - u o)/2» . (20) 

W ith p = a(1 - e2 ) , (12), and (19) , we easily obtain the evolution of t h e 
semimajor ax is a : 

a = tto - 2a oeocr((1/2) sin((u + uo)/2 ­

- 2w + (Uo) sin( (u - uo)/2) + 
+ (1/6) sin(3(u + uo)/2 + 2w - (Uo) sin(3(u - uo)/2) ­

- cos(2w ) sin« u + 'U o)/2 + (Uo) sin«u - u o)/2 ) + 
+ sin «(u + u o)/2 - (Uo) sin« u - uo)/2» /(1 - e~ ) . (21) 

It is clea r that expressions (19), (20) , an d (21) are 2r.-p eriodic functions 
of u, too. 
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By the last two expressions (12) and (19)-(21) we can say tbat 
along the interval [uo, uo+ 27t] tbe osculating orbit lies in a fixed plane, 
but undergoes changes, in sbape, dimensions, and orientation. .As to the 
evolution of these changes, putting D..!I=Y(u)-yo, with Y E { a, e, (U}, aud 
knowing tbat y(u'o) = y(uo + 2;;;) = !Jo, there are the following po ssible 
situa.tions : 

(i) !1y does not admit zero s in the interval (uo, U o + 27t), that is, 
during a revolution (excep t , of cou rse , the star t ing aud ending point s) 
t he re spe ctive element is sy stematicallv greater OI' smaller than its 
initial value : 

ii ) !1y admita zeros in t he interval ( uo, 110 + 2r.: ), that is, during 
a revolution the respective element oscillates around its initial value . 

The kind of change undergone by the element y depends on tbe 
values assigned to the initial parameters Uo and (uo, and to the constant w. 

For the t ra jectory of t.he point mass m, u sing the orbit equation in 
1)01a1' coordinates r = p / (1 + e cos v) , where 'v = true anoma1y, under 
tbe forrn 

r = p /(l + qA + kR ), (22) 

and taking into account (12 ), (15 ), and (16), we get 

po/r = 1 + (qo + (Q - Qo)/(3H))A + (k o + (P - P o)/(3H ))B, (23) 

with Q, P (and Qo' P o) p rovide d b y (17 ), (18), respectively. W e can hence 
say that equation (23 ) d escrib es an ellipse wbose eccentricit y undergoes 
continuous and 2;;;-pe1'iod ic changes, according t o one of tbe above men­
tioned situat ions. 

4. TIIE IXODAL PERIOD 

Tbe noda1 period, defined by 

2:-: 

T n = ~ (dt/du) du, (24) 

o 

will b e estimated by means of tbe metbod proposed by Zbongolovicb (1960) 
and extended by Mioe (199 2). According to tbis metbod, wbose principles 
were also sketched in t he papers of Mioc (1980), Mioc and Blaga (1991), 
Mioe and R a du (1991 b ), Mioc et al. (1992) and will not be re ­
p eated h ere, tbe nodal per iod (perturbed by an arbitrary foree depending 
on a small parameter a) is given to first order in CI by 

(25) 
wbere 

2,; 

T o = pW2H - l /2 ~ g-2 du, (26) 

o 
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and 

with 
2r. 2~ 

i ; = ~ g-2 tlp du, i , = ~ g-3Atlq du, 

o o 
(28) 

2n 2n 

II: = ~ g-3B tlk du, I a = ~ g- 5B( a(CW jD)j acr)ocr du. 

O â 

In these formulae H is given bv (7), 11?1= Y(1t ) - Yo' Y E {P, q, k}, while 
9 = g(u) = 1 + qoA + koB. 

I n OUl' problem , where the small parameter is just whi ch appears(J 

in (4), we observe that I p = 0, 1" = O, expand g-2 and g-3 to third order 
in qo' k o (01' equivalently in eo), replace the results and tlq, tlk given by 
(15 ) - (16) into (26) and (28), perîorm the integrat ions, and calculate the 
expression (27). The resul t s are: 

(29) 

+ 2qokoL + 5 ( q~J + kgK ) + 7(qgK + k~.]) + (30) 

+ 5(qg+ k~) (qiJo + koPo))· 

:Now, in order to compare the perturbed nodal period with the cor­
responding Keplerian period, we replace in (29) - (30): the definitions 
of q and k, the relation p = a(1 - e2 ) , the expressions (17) - (18), then 
(8) an d (9) ; performing the sum (25), we get the perturbed nodal period 
with an accuracy of first order in and th ird order in eccentricity : (J 

(31) 

where 

f = 1 + [cos (Uo(2 sin w sin 21t o sintw + 1to) + cos u o(sin 2W + cos2U O»+ 

.As long as f has po sitive values (and this ia generally the case, as 
we shall see), the nodal period T n will be shorter than the corresponding 
Keplerian period T K = 27tag/2 H -1/2, the difference being of order at most 
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a T K. SO, the anisotropy in G has the tendency to accelerate the motion. 
Tbis speeding is maximum when the initial position is in pericentre a 
(1( 0 = 0)0)' and in addition the initial line of nodes is perpendicular to 
V2(w + 1(0 = rtj2 ar 3rtj2), that is, (32 ) reduces to 

f = 1 + 2 1:'0 + 2e~ +~2~ , (33) 

and minimum when the initial po sition is in apocentre (uo = 0)0 + re), and 
the above second condition 15 tulfilled, too j in this cas e (32) reduces to 

f = 1 - 21:'0 + 2~ - 2 e~. (34) 

Two remarks are to be made. P irstly , ob serve from (31) and (34) 
that to have Ta> T K (decelcrated m ot ion) the initial eccentricity must 
exceed 0.65 rougWy. But for such high eccent ri c initial orbits an accuracy 
of third orde r in Co is absolu tely insu fficien t j therefor e, with the accuracy 
of (31) - (32), we can say that the nodul period is always shor t er than 
ihe corr esponding Keplerian period. Second1y, observe from (3) and (4) 
t.ha t the second condition imposed to U o in order to get an extremum for 
f leads ta an initial value of G equal to Gco (initially K eplerian motion 
governed by the purely Newtonian attraction j this is a natural and usual 
condition ). 

5. COS CJ.USIO NS AND COlBIENTS 

The possibl e a nisotropy in G presumed by Will (1971) t o be of the 
îorm (2) leads to a two-body problem in which the gravita ti onal force ia 
anisotropic . Vint i (1972), whose p aper const itu t ed the departure poin t for 
our Invest igat ion, solve d t his problern by in tegrating a Binet- type equa­
t ion, whi le OUl' treatment is a p er turbative one based on the integration 
of Newton-Euler equations , More conc re tely , Vin t i eompared the motion 
describ ed b y his equation (t hrough orbital elemen t e defined on a non­
osculating fixed ellipse) wi th the unperturb ed motion ob t ain ed by m aking 
c; = O in (2) j we consider the anisot ropy of G t o b e a p ert urb ing fact or and 
compare the real perturbed orbit with t he init ial K eplerian orbit. 

The major purpose of Vin t i' s (1972) paper is t o estimate quantita­
tively the effects of the anisotropy of G on orbit a in t he solar system(by 
.ident ifying p ractically V with Sun's velocity with respect to Galaxy's 
centre) , The present paper studies the evolution of an arbitrary elliptic­
type orbit in the case of an anisotropic gravitational constant. 

Our results indicate an elliptic-type m otion in a fixed plane, The 
semimajor axis, eccentricity, and argument of pericent re, obtained as 
functions of 1(, present 27t-periodic variations. The no dal period, det er­
mined with a first order accuracy in a and third order accuracy in eo, 
is shorter than t he corresponding Keplerian period , the difference b eing 
of order at most aTKo .A. speed ing of the mot ion having this order of magni- : 
tude results fro m Vinti's inv estigat ion, t oo. 
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The u se of the argument of latitude as independen t v ariable (and 
the consecutive determination of the nodal period as basic t ime interval) 
allows the stu dy of very low eccentric orbits, even circular. 

By (5) and (6) this is a problem which belongs - we repea t - t o 
the general t wo-bo dy problem wi th changing equivalent gravitat ional 
parameter in the meaning of Mio c et al. (1988 a ). The variation of fL can 
be of very different natures (see e.g. Duboshin, 1963; Sav edoff and Vila , 
1964; Glikman , 1976, 1978 ; Saslaw, 1978 ; Giurgiu, 1988) and of various 
types. Among such changes, tho se with cyclic eharacter , especially the 
periodic ones, were approached b y Saslaw (1978), Mioc et al. (1988 b , c), 
Mioc (1989), Şelaru et al. (1992). The anisotropy of fL constitu tes an apar t 
case of periodic v aria tion (see Saslaw, 1978), and this class of problems 
includes the situation we stu died in this paper , too. 
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