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Abstract. The two-body problem corresponding to a gravitational force with
anisotropic G is treated by means of perturbation theory. The integration of
Newton-Euler equations shows that the perturbed orbit is of elliptic type, lies
in a fixed plane, and its semimajor axis, eccentricity, and argument of pericentre,
obtained as functions of the argument of latitude, undergo 2=-periodic variations.
The nodal period, determined with an accuracy of first order in a small parameter
¢ and third order in eccentricity, results to be shorter than the corresponding
Keplerian period. The problem approached here constitutes a particular case of the

very general two-body problem with changing equivalent gravitational para-
meter.
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1. INTRODUCTION

Consider a point mass m orbiting a point mass M at distance r under
the only action of the gravitational force

F = — (GMm|r3)r. 1
An eventual anisotropy in the gravitational constant @ :
¢ = Gooll + (V- T/1)2e?) 2)

and the possibility to detect it by laboratory experiments have been discus-
sed by Will (1971). In (2) G, = Newtonian attraction constant, ¢ =speed
of light, ¢ < 0.015 (see Vinti, 1972), while V stands for the velocity of the
laboratory system with respect to a so-called parametrized post-Newtonian
(PPN) system. The quoted papers identify practically V with Sun’s
velocity relative to the Galaxy’s centre.

The two-body problem which results with the force (1) in which G
has the expression (2) was solved by Vinti (1972) on the basis of a Binet-type
equation. He constructed a fixed ellipse (which is not an osculating one, and
represents the solution of the homogeneous equation) to define orbital
elements, and compared the motion corresponding to the general solution
of the unhomogeneous Binet-type equation with the Keplerian motion

obtained for e« = 0, especially as regards dynamic orbital parameters (true
longitude, anomalies).
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Here we shall approach this problem in a perturbative manner. A
comparison with Vinti's (1972) method and results will be made in the last
section of this paper.

We have to emphasize the fact that this problem constitutes a par-
ticular case of a much more general one : the two-body problem with
changing equivalent gravitational parameter (see Mioc et al., 1985 a).

2. EQUIVALENT GRAVITATIONAL PARAMETER

The force (1) being central, it is clear that the motion of m relative
to M will be planar. Denote: $ = angle between V and orbit plane,
YV, = vector resulting by projecting V onto orbit plane, § = angle be-
tween V, and r, w= angle from V, to the ascending node of the orbit (de-
fined with respect to a fundamental plane). It results immediately

0 =w-+ u, D (3)

L

where v = argument of latitude. Notice that V, is fixed in an inertial
space (Vinti, 1972), and the orbit plane is fixed, too; hence both V, and
the line of nodes keep their positions constant in the orbit plane; thus w
is constant.

Vinti’s (1972) geometric considerations lead to

G = Go{l + o cos? 0), (4)

with ¢ = = (V/c)? cos?B. Taking into account (1) — (4), the relative orbit
of m will be described by the equation

d2r/de? — h3rd = — ufr?, (5)

in which » = constant angular momentum, and p has the expression

w=H -+ JA* 4+ KB? — LAB, (6)

where we denoted : Y
H = Goo(M + m); (7)

J = oH cos?w, K = oH sin*w, L = sH sin(2w); (8)

i A =-cosu, B =sinu. (9)

One sees by (5) and (6) that this is a two-body problem in which the equi-
valent gravitational parameter p (see Mioc et al., 1988 a) is variable. We
shall treat this problem perturbatively ; in other words, taking into account
(5) and (6), we shall consider that in the right-hand side of (5) the term
— H/r? features the effective Newtonian attraction, while the term
(LAB — JA?* — K B?)[r? features a perturbing force dueto the anisofropy
of G. That is why we use hereafter a perturbation theory terminology.
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3. EVOLUTION OF THE ORBITAL ELEMENTS
Since the perturbing force depends explicitly on u, we study the
motion on the basis of Newton-Euler equations written with respect to
the argument of latitude (e.g. Miocc and Radu, 1991 ; Mioc et al., 1992) :
dp/du = 2(Z/H)r3*T,
dQ/du = (Z{H)r*W |[(pD),
dijdu = (Z|H)r3AW |p, (10)
dg/du = (Z/H) (r’kBCW [(pD) + r*T(1(q + 4)/p + 4) + r°BS),
dkfdu = (Z[H) (— rqgBOW [(pD) + 12X(r(k + B)/p + B)— 1248),
dt/du = Zr¥(Hp)~12,

in which Z = (1 — 72CQ/(Hp)Y?)~1, p = semilatus rectum, « = argument
of pericentre, e = eccentricity (¢ = ¢ cos o, kX = e sin »), Q = longitude
of ascending node, ¢ = inclination (C = cost, D = sin1), while §, 7', W=
= radial, transverse, and binormal components of the perturbing accele-
1ation, respectively.

But the perturbing force is radial; so

S ={IAB — JA® — KB/}, T=0, W =0, (11)
and the first three equations (10) yield immediately

P=Dpy Q=Q i=1, (12)

where subscripts refer to the initial position w = u,. Hence the orbit plane
is fixed (this is natural since the force acting on m is central), and the semi-
latus rectum keeps a constant value.

By (12), Z = 1; with (11) the fourth and fifth equations (10)acquire
the forr

dg/du = (LAB? — JA®B — KB%)/H, 13)
fdk/dv = (JA® + KAB? — LA®B)/H. (14)

Observe that equations (13) and (14) are no more coupled. Integrating
them, the behaviour of ¢ and k in the interval [ug, u ] is given respectively
by

q=qo+ (@ — Q,)/(3H), (15)

k = ky+ (P — P,i(3H), (16)
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where we used the abbreviations
Q = Q(u) = LB%++ (J — K)A® + 3K A4, (17)
P = P (u) = LA® — (J — K)B* 4 3JB, (18)
and @, = Q(uy), Py = P(u,). It is easy to see that the expressions (15) and

(16) are 2w-periodic functions of w.

Let us now pass to more intuitive orbital elements. Using the defi-
nitions of ¢ and %, and expressions (15) — (18), then substituting (8) and
(9) into the resulty, we get (to first order in &) the behaviour of the eccen-
tricity :

e = e, — of(1/2) sin((u + ug)/2 — 2w + o) SIn((w — u,)/2) +
+ (1/6) sin(3(u + ug)/2 + 2w — wy) sin(3(u — ug)/2) —
— ©08(2w) sin((w 4 w)/2 + wo) sin((u — ue)/2) +
+ sin((u + ue)[2 — wo) S — 1u,)/2)),; (19)
and that of the argument of pericentre :
© = ©p — (ofeg) ((1/2) cos((u + ug)/2 — 2w + o) sin((u — wue)/2) —
— (1/6) cos(3(u 4 u,)/2 + 2w — ©y) Sin(3(u — ue)/2) —
— 008(2w) cos((w + )2 + ©) Sin((w — wp)/2) —
— cos((1 + ue)/2 — @) sinf(u — wg)/2)). (20)

With p = a(l — €2), (12), and (19), we easily obtain the evolution of the
semimajor axis a :

a =ty — 2a,e,5((1/2) sin((u + ug)/2 —
— 2w+ og) SiN((w — wp)/2) +
+ (1/6) sin(3(w + u,)/2 + 2w — @) sin(3(u — u,)/2) —
— co8(2w) sin((% + %,)/2 + o) sin((w — wuy)/2) +
+ sin ((w + ug)/2 — @) sin((u — ue)/2))/(1 — &)- (21)

It is clear that expressions (19), (20), and (21) are 2=-periodic functions
of u, too. .
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By the last two expressions (12) and (19)—(21) we can say that
along the interval [ug, u,+27] the osculating orbit lies in a fixed plane,
but undergoes changes, in shape, dimensions, and orientation. As to the
evolution of these changes, putting Ay=y(u)—y,, with y e{a, ¢, v}, and
knowing that y(u,) = y(u, + 27) = y,, there are the following possible
situations :

(i) Ay does not admit zeros in the interval (uy, u, + 2=), that is,
during a revolution (except, of course, the starting and ending points)
the respective element is systematically greater or smaller than its
initial value;

il) Ay admits zeros in the interval (g, u, +2x), that is, during
a revolution the respective element oscillates around its initial wvalue.

The kind of change undergone by the element y depends on the
values assigned to the initial parameters u, and w, and to the constant w.

For the trajectory of the point mass m, using the orbit equation in
polar coordinates r = p / (1 + e cos v), where » = frue anomaly, under
the form

r = pl(L + g4 + kB), (22)

and taking into account (12), (15), and (16), we get
Polt =1+ (¢ + (@ — Qo)/(BH))A + (k, + (P — Py)/(3H))B, (23)

with @, P (and Q,, P,) provided by (17), (18), respectively. We can hence
say that equation (23) describes an ellipse whose eccentricity undergoes
continuous and 2z-periodic changes, according to one of the above men-~
tioned situations.

4. THE NODAL PERIOD
The nodal period, defined by

2n

Tns= S (dt/du) du, (24)

will be estimated by means of the method proposed by Zhongolovich (1960)
and extended by Mioc (1992). According to this method, whose prineciples
were also sketched in the papers of Mioc (1980), Mioc and Blaga (1991),
Mioc  and Radu (1991 b), Mioc et al. (1992) and will not be re-
peated here, the nodal period (perturbed by an arbitrary force depending
on a small parameter o) is given to first order in ¢ by

To =T, + AW Ty, (25)
where

2m
To = p*H P S 97 du, (26)

0
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and
AVTy = piPH-Y? (— 21, — 21 4 (3/2)ps i, + peH-U,),  (27)
with
2;: 21
I, = S g2 Ap du, I, = S g-3AAq du,
0

0

(28)

2r
{8 S g-*B Ak du, I, — \ g-5B((CW D)/ s0),s du.
0

oL,\§

In these formulae H is given by (7), Av= y(#) — Yo ¥ € {Py ¢, k}, while
g =g(u) =1+ oA + kyB.

In our problem, where the small parameter is just ¢ which appears
in (4), we observe that I, = 0, I, = 0, expand ¢g-2 and ¢—2 to third order
in qq, ko (or equivalently in e;), replace the results and Ag, Ak given by
(15) — (16) into (26) and (28), perform the integrations, and calculate the
expression (27). The results are:

Ty = 2npy?H-VA(1 + 3(q5 + K3)/2), (29)
AMTg = — mpfPH-¥*2(J + K) + 2(¢o@o + koPo) +
+ 2qokoL + 5(qeJ + kiK) + T(gK + kgJ) + - (30)
+ 5(g5 + K3) (2@ + KoPy))-
Now, in order to compare the perturbed nodal period with the cor-
responding Keplerian period, we replace in (29) — (30) : the definitions
of ¢ and %, the relation p = a(l — ¢?), the expressions (17) — (18), then

(8) and (9); performing the sum (25), we get the perturbed nodal period
with an accuracy of first order in ¢ and third order in eccentricity :

Tq = 2nai/? H-Y1 — of(eg wqy gy W)), (31)
where

J =14 [cos w42 sin w sin?u, sin(w + u,) + cos uy(sin’*w 4 cos’u,)) -+
-+ sin @y (2 cos w cosu, sin(w + u,) + sin uy(cos?w 4+ sin®uy))] X (32)
X (€0 + &) + (1 4 sin? (w + og))e.

As long as f has positive values (and this is generally the case, as
we shall see), the nodal period T will be shorter than the corresponding
Keplerian period 7Tz = 2na}/? H-V/2, the difference being of order at most
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6T. So, the anisotropy in G has the tendency to accelerate the motion.
This speeding is maximum when the initial position is in pericentre o
(up = @), and in addition the initial line of nodes is perpendicular to
YVo(w + u, = =n/2 or’ 3x=/2), that is, (32) reduces to

=14 2¢54- 263 +:263, (33)

and minimum when the initial position is in apocentre (¢, = w, + =), and
the above second condition is fulfilled, too; in this case (32) reduces to

f=1—2¢ + 268 — 263. (34)

Two remarks are to be made. Firstly, observe from (31) and (34)
that to have To> T'; (decelerated motion) the initial eccentricity must
exceed 0.65 roughly. But for such high eccentric initial orbits an accuracy
of third order in ¢, is absolutely insufficient; therefore, with the accuracy
of (31) — (32), we can say that the nodal period is always shorter than
the corresponding Keplerian period. Secondly, observe from (3) and (4)
that the second condition imposed to u, in order to get an extremum for
fleads to an inifial value of ¢ equal to G, (initially Keplerian motion
governed by the purely Newtonian attraction ; thisis a natural and usual
condition). '

5. CONCLUSIONS AND COMMENTS

The possible anisotropy in G presumed by Will (1971) to be of the
form (2) leads to a two-body problem in which the gravitational force is
anisotropic. Vinti (1972), whose paper constituted the departure point for
our investigation, solved this problem by integrating a Binet-type equa-
tion, while our treatment is a perturbative one based on the integration
of Newton-Euler equations. More concretely, Vinti compared the motion
described by his equation (through orbital elements defined on a non-
osculating fixed ellipse) with the unperturbed motion obtained by making
e = 0in (2); we consider the anisotropy of & to be a perturbing factor and
compare the real perturbed orbit with the initial Xeplerian orbit.

The major purpose of Vinti’s (1972) paper is to estimate quantita-
tively the effects of the anisotropy of & on orbits in the solar system (by
identifying practically V with Sun’s velocity with respect to Galaxy’s
centre), The present paper studies the evolution of an arbitrary elliptic-
type orbit in the case of an anisotropic gravitational constant.

Our results indicate an elliptic-type motion in a fixed plane. The
semimajor axis, eccentricity, and argument of pericentre, obtained as
functions of u, present 2n-periodic variations. The nodal period, deter-
mined with a first order accuracy in o and third order accuracy in e
i1s shorter than the corresponding Keplerian period, the difference being
of order at most ¢Tx. A speeding of the motion having this order of magni-~-
tude resuits from Vinti’s investigation, too.
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The use of the argument of latitude as independent variable (and
the consecutive determination of the nodal period as basic time interval)
‘allows the study of very low eccentric orbits, even circular.

By (5) and (6) this is a problem which belongs — we repeat — to
the general two-body problem with changing equivalent gravitational
parameter in the meaning of Mioc et al. (1988 a). The variation of p can
be of very ditferent natures (see e.g. Duboshin, 1963 ; Savedoff and Vila,
1964 ; Glikman, 1976, 1978 ; Saslaw, 1978 ; Giurgiu, 1988) and of various
types. Among such changes, those with cyclic character, especially the
periodic ones, were approached by Saslaw (1978), Mioc et al. (1988 b, ¢),
Mioe (1989), Selaru et al. (1992). The anisotropy of p constitutes an apart
case of periodic variation (see Saslaw, 1978), and this class of problems
includes the situation we studied in this paper, too.
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