ORBIT CHANGES IN MARS’ LOWER ATMOSPHERE
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Abstraet. Using Sehnal’s exponential law to describe the density distribution in
the Mars’ atmosphere at heights up to 100 km, the first order drag pertur-
bations in the motion of an' orbiter evolving in this height range are analyti-
cally determined over one neodal period. Mars’ oblateness and its atmospheric
rotation are considered. The analytie approach of passive trajectories at such
altitudes is justified.
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1. INTRODUCTION

Using the numerieal data listed by the MA—87 model (Moroz et
al. 1988), Sehnal (1990 a, b) approximated the height-dependence of the
Martian atmospherie density by analytie formulae for two altitude ranges :
100—1000 km and up to 100 km (in both cases for three density profiles :
minimal, nominal, and maximal). The density formula for 100—1000 km
was used by Sehnal (1990 a) to find some features of a Martian orbiter
motion, and by us (e.g. Mioe et al. 1991) to perform a similar (but more
general from several viewpoints) study.

For altitudes up to 100 km, Sehnal (1990 b) proposed a parabolic
dependence of In g en k (p = density at the height &) :

n(pleg) = Y @ W, (1)

j=0

where p and p, = 1 are expressed in kg/m?3, b is given in km, while the
coefficients a; are separately determined for the minimal, nominal, and
maximal density profiles. He improved this formula by considering a; as
asymmetric terms depending on' the latitude o:

2
6= po OXD (z (ay + @i sin'o) h’) ; ()
j=0
with (nominal model) : ay = —4.1235, ‘ay ='—01206, a,, = — 0.0930,
ay = 0.0136, ayy = — 0.00023, ay = —0.00011.

Of course, since the lifetime of a presumptive orbiter (in passive
trajectory) at so low altitudes is very short, the study of its motion seems
to be of small interest for practical purposes (especially for manned Mar-
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tian space missions). However, for reasons we shall expose in Section 5,
in this paper we shall e%‘mmate analytically the perturbations caused by
the atmospheric drag in five mdependent orbital parameters :

ze ¥ ={p; g=e'cos'n, k =esine, Q,1} (3)

of a Mars’ orbiter (in an initial orbit entirely contained in the height
range 0—100 km) over one nodal period. Here p = semilatus rectum,
e = eccentricity, « = argument of periastron, = longitude of ascend-
ing node, © = incliuation (all with respect to the cl%acal planetocentric
frame). The Mars’ oblateness (e = 0.003) and 'its atmospheric rotation
(of constant angular velocity w) will also be considered.

2. .EQ["J\'I‘I())}H 01 MOTION

Since we study the motion over one nodal p'eI"iod', we addpt as in-
dependent variable the argmument of latitude (w). The corresponding
Newton-Huler system, from which we start, will be used under the form
(Mioc 1991) :

dpdu'="2(Z/py3 T, ‘

dg/dw = (Z[p)(r*k BCW [(pD) H r2d(r( q 4+ A)p + A) + 2By,

dl/du = //pn (—r3qBCW/(pD) 72T(2(L + B)[p + B) — r*48),
il dQ/du = (Z{u)yr*BW|( pD : ‘ e " WAy
Cdidu = (Z]pw3AW(p, '

dt/du = Zv¥(pp) V2,

where Z = 1/(1 — r20Q/(up)'?), v = Mars’ x(ulta,t,lona,l pa,ra,meter r
planetocentric radius vector, A4.= cosu, "B = sin a, = gaay, D —
=;s8in 4, while S, 7', W are, re;s'paetively,the radial, transy ersal, and binor-
mal components of the perturbing acceleration.

With initial 2 smaller than 100 km and R (Mars’ equatorial radius)=
= 3393.4 km: (Morez et al. 1988), the initial-e does not.exceed 0.015;
we shall:therefore consider only quasi-circular orbits (expansions to first
order in q:and k). So, from the well-known orbit equation in polar coor-
dinates, r = p/(1 + e cos v) = p/(1 4 Aq -+ Bk), . where » = true ano-
maly, one will write :

™= phl— nAq — nBk)., (5)

Also, since the per tuxbmg factor is the atmospheuc dra.g, we shall have
in the same conditions (Mioc 1991).:

S = —o3(p/p)(Bg — A¥k),
T = —pdp/p)(L + 24q + 2BK) + pSGw(p.p)llb (6)
- W= — o8 Du(up)24, e e

where 3 is the drag parameter of the orbiter.-

A )
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. We shall integrate (4) by successive approximations, with Z & 14
limiting the precess to first order approximation. So, we may consider
separately the first five equations (4). With (5) and ( 6), and omixttmg in
adv ance the factor Z, these equatlons acqmre the :toun

apjau = p(2(z + ) — 23z + 1)dg — 23w + J)BA)H

dgjdu = b2z + A + (&.+ 2y) — (Ba+2y)4>)q—2(3+y)4 Bk)e,

dk du = b(2(x + y)B (‘?w + y)ABg + (—4x —i— (5 + 24)A42%) k) p,

mmméwwm ABT&ﬂmﬁﬂﬁBmw" " (7)
Q= b(Dz/C) (=42 + 34% + 342Bk)g,

where we used -the abbreviating notation s ('
b ‘pslzp_;llzg"w,t Cw, Y Ly _-p-3/2‘p1/2_ g Y 3 (8)

The variations of the orbital elements (3) ‘éver one nodal period
will be:
en :
Az _—_g (dzjdw)dat, 2€ Y0 . .\ (9)

a

~

with the integrands gi\‘eﬁ by (7). In order to write these equations in a
suitable form for performing the integrals (9), we still have to express
the density as funetion only of w (through 4 and B).

3. EXPRESSION OF THE DENSITY

According to our purposes, we shall adopt for the dentity distribu-
tion law (2). Firstly we consider the altitude:

“h=1r — BRI — ¢ sin%p). i . (10)

With r given by (&);rand with::
5 . sin o = DB, sdd (0D w8 (11)
this i’ornmlé becomes : g ‘ o
h+=p— R+ «cRD?2B? — pAq — pBk. th  (12)
Now we introduce (11) and (12) into'(2), and éxpand the exponen-

tial to first order in ¢ and k. In this expaunsion, the exponential is kept
for the constant terms, while for the variable ones (thoge containing A
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and B), which are small, only two terms will be kept in expansion, ex-
cept for the quantities au(p — R)DB and ay(p — R)*DB, which are of
the order of unity ; for these ones the exponential will be bepara,telv ex-
panded, keeping four terms in the respective expansions. Acting in the
specified way, and introducing successively the abbreviating notation. :

Xy = pgexp (2 ajo(p — j) ) (13)

cpEad, Gpi= o) G = 2D gyt Zo.4l0 i R)); ¥:
03 = eRD¥ay + 200 = R)), € = a5y REDA, 65'= ag 2 RD5 ;
dy =1, d, = D(p — R)(ay + axn(p — R)), dy = di/2, d; = d}[6,
dy = D(p — RPanay(aiy/6 + ayas(p — R)[4 + aiy(p — R)*/6),
dy = D°(p — R)%a3 a3,(ay + ay(p — R))/12, (15)
dg = D%ial(p — R)°/36;

Qo = —P(ayy + 2a59(p — R)),Q, = —pD(ay + 2ay(p — R)),

Qs = —2a50epRD? Q3 = —2ayeprD?; (16)
Ly = E Cidh = 0$57‘j e 016; (17)
i4j=m
R, = ;_thQ,., m = 0,11, n = 0,3, (18)
the expression of the density becomes :
o (Z LaB" + (g + BK) Y R B‘) (19)
=0

4. VARIATIONS OF THE ORBITAL ELEMENTS

By (19), the density is expressed only in terms of A, B, and quan-
tities considered constant over one revolution. Substituting (19) into (7),
the motion equations become :

dp/du = X ,pb(PyS; + (PoySs + PS)Aq + (PyS, + P,8,)Bk),
dg/du = X B(PyAS; + (P3S; + (PoS; 4+ P38))A%)q + (PS5 +

+ P,S,)ABE),
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dkfdu = Xb(PyBS; + (PySy + PyS;)A Bg + (P58, + P;A43%, +
-+ P B%S,)k), (20)
dQ/du = X b(2/CH —ABS; + (38, — 8,;)4%Bg + (38; — 8,)4 B%k),
di/du = Xb(Da/C)(— A28, + (38; — S,)A2%q + (38, — Sy)42BEk),
where we used the notation:
1 14
By =28 iB) &= 'EOL,,.B"‘, St = StBYe= ;0 R, (21)
Py =2x+y), Pp= —2Bx +p), Py=2a+ 2y,
P, = —(5x + 2y), Py = =22z + y); P = =—4a. (22)

Finally, performing the integrals (9) with the integrands given by
(20), we obtain the perturbations of the orbital elements over one nodal
period :

7
AP b7 Q’TXon Z fn(POLG + (Plen-l + 1)01€2n—1)k)1

n=0

n-0

8
Ag = 27X bg Y JalPs Lgy — Pgliga_ 3 + Poloa — Bas_s))y

8
Ak = 2nX b 2 Ja(PoLign—y + ((Pg + Ps)lsy — Pyligy—g + PyRon-3)k), (23)

n=0

8
AQ = 2nX b(x/C)gq Y Ja(B(Lign-1 — Lign-3) — (Ryn—y — Ran-3)),
n=1

8
Ai = 2eX H(D2(C) S, fullaws — Low + (3(Lgwg — Lgu—g) —
n=0

2 (R2n~1 g Rzﬂ—:;))k)?

where we introduced artificially L= R_; =0 (i =1,3), Iy =0 (j =
= 12,16), By = 0 (k = 15,16), and wrote

fo=1, fa = ((2n — 1)1/(2"n!), n e N*.

Of course, various particular cases, as for instance initially circular
orbit (¢ = k = 0), or neglection of atmospheric rotation (z = 0), can also
be studied operating in the above formulae the corresponding modifica-
tions.
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5. COMMENTS,

. Consider a body in passive trajectory orbiting Mars such that
h < 100 km. Using our final formulae, we estimated numerically that,
because of the strong atmospheric drag at such altitudes, the respective
body cannot perform but few revolutions before falling on Mars’ surface.
Moreover, in order to accomplish some passive orbits, the body must
have a very small drag parameter. (it must be very massive and of small
dimensions). It seems to follow that an analytic study of the passive or-
bits in the Mars’ atmosphere at heights up to 100 km would be of small in-
terest for concrete situations (eqpecxalh’ for practlcal purposes related to
space dynamics).

Nevertheless we consider that such a study is of beth practical
and theoretical interest. From the practical point of view, the knowledge
of the drag perturbations on the passive trajectory can provide useiul
data for determining the orbit corrections to be performed by manoeu-
vres. It is also useful to know how long a presumptive Martian lander can
fly .on passive orbit lower than 100 K.

From a theoretical point of view, although wenelated by a concrete
case (orbits in the Mars’ atmosphere at helo"hts up to 100 hm) our research
can constitute an analytie study of the orbltal motion in a resisting me-
dium whose density distribution is deseribed by the law (2), “1’(}1 the
coefficients a o, @, of the same order of maomtude but covering a lar-
ger height range. Another problem to Whl(’h our theoretlcal reault\ can
be rLpphed is that of the purely dynamically perturbed motion of a meteo-
roid-like body, captured by Mars, whose circummartian orbit brought
it in the above considered atmospheric layer.
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