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Abstract. In this paper we generalize Rein’s model for the elliptic restricted three-
body problem (ER3BP) by taking into account drag. We determine the equations of
motion, the stationary points and we study the linear stability of motion in the sense
of Lyapunov around L4 as a function of the mass parameter and the eccentricity of
primaries. Applications to the Earth-Moon system are also presented, with trajectories
computed around the L4 equilibrium point.
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1. INTRODUCTION

The planar ER3BP consists of studying the motion of an infinitesimal mass
point P under the gravitational attraction of two bodies, P1 and P2. Let m1 and m2

be the masses of P1 and P2, respectively.
P1 and P2 describe elliptic orbits with a common focus in the center of mass

O, eccentricity e, semi-major axes a1 and a2, and mean motion n. The motion of the
point P takes place in the orbital plane of P1 and P2.

Let us consider a uniformly rotating frame Oξη that rotates around O with the
constant angular velocity n and let the coordinates of the three points be P1(ξ1,η1),
P2(ξ2,η2) and P (ξ,η).

In this rotating frame, P1 and P2 describe closed curves around the “mean”
points P 1(−a1,0) and P 2(a2,0), respectively. The positions of Pi, i = 1,2, are
given by Rein (1940):

ξi = (−1)i ai(1−e2) cos(v−nt)1+ecosv ,

ηi = (−1)i ai(1−e2) sin(v−nt)1+ecosv ,

(1)
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where v stands for the true anomaly, and

a1 =
am2

m1+m2
,

a2 =
am1

m1+m2
,

(2)

a being the distance between P 1 and P 2.

The planar motion of the infinitesimal mass point P with respect to Oξη is
described by the differential equations:

ξ̈−2nη̇ = Uξ

η̈+2nξ̇ = Uη,

(3)

where subscripts mark the corresponding partial derivatives, and:

U =
n2

2
(ξ2+η2)+

k2m1

r1
+
k2m2

r2
. (4)

In the above formulas, k is Gauss’ constant and r1, r2, are given by:

r2i = (ξ− ξi)2+(η−ηi)2, i= 1,2. (5)

2. REIN’S SCHEME

The force function given by (4) and used in (3) is an explicit function of t, as
the coordinates (ξi,ηi), i = 1,2, are given by (1). Therefore, the differential system
of equations (3) does not have a first integral analogous to Jacobi’s integral for the
circular restricted three-body problem. For this reason, several authors have proposed
simplifying schemes for the ER3BP. In this paper we’ll use one of these methods,
called Rein’s “semi-averaging” method (Rein (1940)).

The coordinates (ξi,ηi), i = 1,2 in (1) can be expressed by means of infinite
power series of the eccentricity e, as follows:

ξi = (−1)iai{1+e [−1
2 e− (1+ 3

8 e
2) cos(nt)+ 1

2 e cos(2nt)+
3
8 e

2 ˙cos(3nt)+ . . . ]},

ηi = (−1)iaie[(2− 3
8 e

2) sin(nt)+ 1
4 e sin(2nt)+

7
24 e

2 sin(3nt)+ . . . ], i= 1,2.
(6)

For the points P1 and P2, if e is small enough to neglect ej for j ≥ 2, we have
finite expressions of their coordinates and these are explicit functions of t. Let us
denote these coordinates by ξi,ηi. We have:

ξi = (−1)iai(1−ecos(nt))

ηi = 2(−1)iaiesin(nt) i= 1,2.

(7)
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The above equations represent ellipses having the centers at P 1 and P 2, re-
spectively, and the semi-major axes parallel to the Oξη-axes. The lengths of the
semi-major axes Ai and Bi, i= 1,2 of these ellipses are given by:

Ai = 2aie
Bi = aie, i= 1,2.

(8)

In Rein’s scheme, we replace the force functionU by its time-averaged function
U :

U =
n2

2
(ξ

2
+η2)+

1

T

∫ t0+T

t0

(
k2m1

r1
+
k2m2

r2
)dt, (9)

with T = 2π/n, r1 and r2 given by (5), and ξi,ηi replaced by ξi,ηi, respectively.
In order to emphasize that the motion of P is governed by the force function

U , we rename the frame Oξη as Oξη. The averaged function U can be rewritten as:

U =
n2

2
(ξ

2
+η2)+

k2m1M1

ν1
+
k2m2M2

ν2
, (10)

where ν2i = λ2i −µ2i . Here, λi and µi are elliptic coordinates in the system of ellipses
having the same foci as the ellipses of P1 and P2, respectively, and

Mi =
2

π
K(χi), i= 1,2. (11)

K(χi) represents the elliptic integral of the first kind:

K(χi) =

∫ π/2

0
(1−χ2

i sin
2ϕ)−1/2dϕ, (12)

with χi given by:

χ2
i =

4a2i e
2−µ2i

λ2i −µ2i
, i= 1,2. (13)

The transformation between (λi,µi), i = 1,2, and the cartesian coordinates
(ξ,η) is given by (Pál (1982), Pál (1983), Rein (1940)):

λ2i =
fi+(f2i −gi)1/2

2 ,

µ2i =
fi−(f2i −gi)1/2

2 , i= 1,2,
(14)

where
fi = (ξ− (−1)iai)2+ηi2+3a2i e

2,
gi = 12a2i e

2η2, i= 1,2.
(15)

Rein’s trajectories for the relative motion of P can be obtained from the differ-
ential equations of motion:

ξ̈−2nη̇ = U ξ,

η̈+2nξ̇ = Uη.
(16)
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Here we can see the advantage of Rein’s method: the force function U is not
an explicit function of time anymore and the equations of motion (16), admit a first
integral analogous to Jacobi’s first integral:

ξ̇
2
+ η̇

2
= 2(U +h), (17)

where h is the constant of integration.
Additionally, zero relative velocity curves are given by the equation U(ξ,η)+

h= 0 (Pál & Oproiu (1991)).

3. PERTURBATION EFFECT OF DRAG

The equations of the planar motion of the third body, perturbed by an arbitrary
external force F(Fξ,Fη), are given by Murray (1994), Murray & Dermott (1999):

ξ̈−2nη̇ = U ξ+Fξ,

η̈+2nξ̇ = Uη+Fη.
(18)

Generally, the components of F are functions of the position (ξ,η) and the
velocity (ξ̇, η̇). For our problem, we will also consider F = O(K), where K is the
drag parameter. Note that when F= 0, we have Rein’s problem.

From Eq.(18), we have:

ξ̇ ξ̈+ η̇ η̈− (ξ̇ U ξ+ η̇ Uη) = ξ̇ Fξ+ η̇ Fη, (19)

If we denote CJ = 2 U − ξ̇
2
− η̇2, we get

dCJ
dt

=−2 (ξ̇ Fξ+ η̇ Fη) (20)

Above, (ξ̇ Fξ+ η̇ Fη) is the work done by the drag force F, per unit of time.
In what follows we’ll consider that the third body (mass point) in Rein’s prob-

lem is moving in a resisting medium with a relative velocity equal to the relative
velocity of the rotating medium. In addition, we consider the drag force to be
proportional to the square of the velocity v of the particle in the rotating frame:
F = Kvv = K(vξ̇,vη̇), where K < 0 is the drag constant; this force is called
quadratic drag. The equations of the planar motion of P are:

ξ̈−2nη̇ = U ξ+Kvξ̇,

η̈+2nξ̇ = Uη+Kvη̇,
(21)

and from (20) we have:
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dCJ
dt

=−2K v (ξ̇
2
+ η̇

2
) > 0 (22)

4. APPLICATION TO THE EARTH-MOON SYSTEM. ORBITS AROUND L4

In this section we consider the Earth-Moon system and with the notations in-
troduced in previous sections. Let P be a spacecraft, P1 the Earth and P2 the Moon.

For this application, units are taken such that both the sum of the masses of P1

and P2 and the distance between the points equal 1. Moreover, the unit of time is
taken such that the time period of P1 and P2 around the center of mass equals 2π
units. This way n = 1 and k2 = 1. For the Earth-Moon system, the eccentricity is e
= 0.0549 and the Moon to Earth ratio is m2 /m1 = 1/81.45.

Equilibrium points (ξ̇ = η̇ = ξ̈ = η̇ = 0) of the system (18) are given by the
system of equations:

U ξ+Fξ = 0,

Uη+Fη = 0.
(23)

If F = 0, the algebraic system of equations (23) has five roots, represented by three
collinear points Li(xi,0), i = 1,2,3, and two quasi-equilateral points Li(xi,yi),
i= 4,5.

Using Rein’s averaged potential for the Earth-Moon system we determined the
coordinates of these points (see also Barbosu & Oproiu (2009), Barbosu & Oproiu
(2013), Pál & Oproiu (1988), Pál, Oproiu, & Macaria (1990)).

The coordinates of the collinear points are:

L1(0.8434404371,0),

L2(1.1486457454,0),

L3(−1.0050521268,0).

The coordinates of the quasi-equilateral points are:

L4(0.4827669364,0.8689222737),

L5(0.4827669364,−0.8689222737).
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Note that the drag of the uniformly rotating medium does not affect the posi-
tion of equilibrium points (SHU Si-hui et al. (2005)).

Let us now consider an application around the equilibrium point L4, with a
drag constant K = −0.02 and the following initial conditions for the equations of
motion (21):

ξ(0) = 0.4827669364, ξ̇(0) = 0,

η(0) = 0.8689222737, η̇(0) =−0.02.

Integrating numerically using RK4 we obtained the trajectory given in Figure 1.

Note that the point P had a non zero initial velocity and in Figure 1 we saw
what we expected, the drag force causing instability and the point P moving away
from the L4 equilibrium point.

Fig. 1 – Trajectory of P in the vicinity of L4, when m2/m1 = 1/81.45
and the drag constant is K =−0.02.
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On another hand, for initial conditions:
ξ(0) = 0.4827669364, ξ̇(0) = 0,

η(0) = 0.8689222737, η̇(0) = 0.
we obtain the results given in Figure 2, where the motion is stable around L4.

In this case, the point P had zero initial velocity.

Fig. 2 – Trajectory around of L4 when m2/m1 = 1/ 81.45 and drag constant K = -0.05.

Rein’s scheme for the ER3BP presents a real interest because of the expression
of the averaged force function U , that does not explicitly depend on t, and the first
integral (17), that provides an effective tool for qualitative studies. In addition, for
small values of the eccentricity, Rein’s model is a very good approximation of the
ER3BP and it can further be generalized and used in other applications.
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