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Abstract. In this article we consider the motion of two bodies under the action of a
Manev central force. We obtain the radius of the circular orbit and analyze its stability
in sense of Lyapunov. Drawn on the first integrals of angular momentum and energy,
we build a positive definite function which satisfies the Lyapunov’s theorem of stability.
The existence of the Lyapunov function prove that the circular orbits in Manev two body
problem are stable at any perturbation. In the end we compare these results with those
valid for the circular orbits in the Newtonian gravitational field.
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1. INTRODUCTION

In the nineteen twenties, Georgi Manev (Maneff in German and French spelling)
published several papers (Maneff (1925), Maneff (1929), Maneff (1930)), in which
he proposed a nonrelativistic gravitational law, able to explain certain dynamical phe-
nomena observed in the solar system, not explained in the frame of classical mechan-
ics. Manev obtained his model as a consequence of Max Planck’s action-reaction
principle in Maneff (1925) and considered it as a substitute to general relativity. In
his papers he noticed that this model provides a good explanation to the observed
motion in the solar system. Manev emphasized that under a particle of mass m2,
which is moving in the static gravitational field due to mass m1 (m1 >m2), acts a
central force of the form

F (r) =−Gm1m2

r2

(
1 +

3G(m1 +m2)

c2r

)
(1)

where r is the distance from the particle m2 to the center of mass of m1, G the New-
tonian gravitational constant and c the velocity of light. The force (1) - known as
Manev force - differs from the Newtonian force through the additional term inverse
proportional with r3. Under the action of Manev force the mass m2 describes a pre-
cessional ellipse, with m1, assimilated to a point mass, placed in one focus of the
ellipse. Around the point in which m1 is situated, the apsidal line is rotating and so
perihelion advance of Mercury could be qualitatively explained. Sir Isaac Newton
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considered a similar force in his book Philosophiae Naturalis Principia Mathemat-
ica issued in 1687. He proved that if to the Newtonian gravitational force is added
the term µ/r3 (where µ > 0 and r the distance between the particles), the particle
describes a precessional ellipse (see for example Newton (1999), Book I, Section IX,
Proposition XLIV, Theorem XIV). At that time, Newton was looking for an expla-
nation to the observed motion of the perigee of Moon. There were other attempts to
use forces similar to Manev force to explain certain dynamical phenomena observed
in the solar system, unexplained in the classical mechanics. A comprehensive list of
such historical works is given in Diacu et al. (1995).

After several decades in which Manev model was forgotten, it was brought
to light by Diacu (1993). In nineteen nineties the motion under Manev force was
analyzed in order to model different phenomena from celestial mechanics, stellar
dynamics or from astrophysics. A survey of the papers devoted to the applications of
Manev gravitational field could be found in Haranas and Mioc (2009).

The investigation of the motion in Manev’s gravitational field revealed that in
the solar system it gives a theoretical approximation as good as general relativity,
building a bridge between classical mechanics and general relativity. An investi-
gation of the ways in which modified Manev potential could model certain general
relativistic results in the frame of Newtonian mechanics was done by Ivanov and
Prodanov (2005).They analyzed the circular orbits around a rotating and non-rotating
massive body or in a parametrized post-newtonian metric.

The two body problem in Manev potential was considered by several authors.
The analytic solution of the problem and its behavior near collision was investigated
by Diacu et al. (1995). The solution of the regularized equations of motion for differ-
ent initial conditions and hypothesis about regularization was obtained by Mioc and
Stoica (1995a) and Mioc and Stoica (1995b).

In this paper we consider the circular orbits in the two-body problem in Manev
potential. In space dynamics the circular orbits are met often. The spacecrafts ex-
ploring the Universe are moving sometimes on circular orbits and also the transfer
between the bodies from the solar system is done sometimes on segments of circular
paths (Roy, 2004). The geostationary satellites have also near circular orbits.

We study here the stability in the sense of Lyapunov of the circular orbits in
Manev potential. In the section 2 we obtain the equations of motion of a body un-
der the action of Manev central force (1) and determine the radius of the circular
orbit. In section 3, we derive the Lagrangian and obtain the first integrals of motion.
Drawn on the angular momentum and energy integral, we build a positive defined
function which fulfills the conditions from the Lyapunov’s stability theorem. Us-
ing this function on the ground of the Lyapunov’s theorem of stability we reach the
conclusion that the circular orbit is stable at any perturbation. In the last section we
compare characteristics of the circular orbit in Manev potential with those from the
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Newtonian gravitational field.

2. CIRCULAR ORBITS IN MANEV’S POTENTIAL

2.1. EQUATIONS OF MOTION

Let us consider the motion of two interacting bodies of masses m1 and m2

(m1 >m2) under a Manev force (1). We assume that bodies are assimilated to point
masses located in their center of mass and the Manev force is an attracting force,
acting in the line joining the bodies. If the position vectors of the bodies are ~r1 and
~r2 respectively, the equations of motion are:

m1~̈r1 = ~F12 (2)

m2~̈r2 = ~F21 (3)

where

~F12 =−~F21 =−F ~r
r

and ~r = ~r2−~r1 is the position vector of m2 relative to m1. After several straight-
forward transformations we get the equation of relative motion of m2 in respect with
m1

µ~̈r = F (r)
~r

r
, (4)

where µ=m1m2/(m1 +m2) is the reduced mass.
During motion, the force acting on m2 is directed to the center of mass of m1,

it is a central force. It depends only on the radial coordinate r, therefore we can deter-
mine a scalar function V (r) from which Manev force is derived (F =−dV (r)/dr).
This function known as Manev potential and is given by

V (r) =−Gm1m2

r

(
1 +

3G(m1 +m2)

2c2r

)
, (5)

where quantities m1, m2, G, c and r have the same meaning as in (1).
If we multiply vectorial the equation of relative motion (4) with position vector

~r, we get the angular momentum integral

~r×µ~̇r = ~C (6)

where the vector ~C is constant, perpendicular on the plane in which the motion took
place. Like in the Newtonian case, the motion is restricted to the plane determined
by the initial position of m1, the initial position vector of m2 relative to m1 and its
initial velocity in respect to m1.
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If we multiply scalar (4) with the relative velocity of m2 in respect with m1,
~v = ~̇r, after some algebra we get the energy integral

µ

2
v2 +V (r) = h (7)

where v is the length of velocity and h the total energy. The relation (7) stats that the
total energy is conserved during the motion.

The motion of m2 is planar, thus further we will analyze the motion in the
orbital plane. In polar coordinates (r,ϕ) the acceleration of m2 is

~̈r = (r̈− rϕ̇2)~er + (rϕ̈+ 2ṙϕ̇)~eϕ , (8)

where ~er and ~eϕ are the unit vectors on the radial and polar axis respectively. After
some straightforward algebra, the projections of the equation of relative motion (4)
on the radial and polar axis become:

r̈− rϕ̇2 = − γ
r2

(
1 +

3γ

c2r

)
(9)

1

r

d

dt
(r2ϕ̇) = 0 (10)

where γ = G(m1 +m2) is the gravitational parameter. From (10) r2ϕ̇ = C, with C
a constant. The relation (10) is equivalent with integral of angular momentum (6),
because the length of angular momentum is |~C|= µr2ϕ̇.

2.2. EXISTENCE OF CIRCULAR ORBITS

In polar coordinates, the circular orbits are given by r = r0 = constant, where
the constant r0 is the radius of the circular orbit. From (10) ϕ̇ = C/r20, the angular
velocity is constant and the circular motion is uniform, like in the Newtonian case.
On a circular orbit ṙ = r̈ = 0 and from (9) we get

r0 =
C2

γ

(
1− 3γ2

C2c2

)
. (11)

We observe that if C2 > 3γ2/c2, then the positive real number r0 given by (11) is
the radius of the circular orbit in the Manev two-body problem. In the classical New-
tonian two-body problem the radius of the circular orbit is r0 = C2/γ (Goldstein,
1980). Comparing the radius of the circular orbit in the Manev and Newtonian po-
tential, for a given angular momentum, we note that in the Manev case the radius
of the circular orbit is smaller then in the Newtonian case. For a given angular mo-
mentum constant C, the difference between the radius of the circle described in the
Manev potential (11) and the corresponding circular orbit from the Kepler problem
is

∆r0 = r0N − r0M =
3γ2

c2
, (12)
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where r0N and r0M are the radius of the circular orbits in Newtonian and Manev
potential, respectively. The difference (12) does not depend on C, although the ra-
dius of the circular orbits are dependent on C. It depends on the ratio between the
gravitational parameter and the speed of light.

3. STABILITY OF THE CIRCULAR ORBIT

Let us consider the stability of the circular orbit in Manev two-body problem
in respect with the variables r, θ, ϕ and their time derivatives ṙ, θ̇, ϕ̇, where (r, θ,
ϕ) are the spherical coordinates, r is the radial coordinate, θ the latitude and ϕ the
longitude. We assume that the circular orbit lies in the equatorial plane.

The Lagrangian for the Manev two-body is

L= T −V (r) (13)

where the kinetic energy T in spherical coordinates is

T =
µ

2

(
ṙ2 + r2θ̇2 + r2 cosθϕ̇2

)
(14)

and the potential V (r) from (5) in terms of the reduced mass µ and the gravitational
parameter γ is

V (r) =−µγ
r

(
1 +

3γ

2c2r

)
. (15)

The coordinate ϕ does not appear explicitly in the Lagrangian (13), it is a cyclic
coordinate. Thus, from the Lagrange equation for ϕ we get the angular momentum
integral

r2 cos2 θϕ̇= b , (16)

with b a constant.
The perturbed motion is given by xi, i= 1,5, with

r = r0 +x1 , ṙ = x2 , θ = x3 , θ̇ = x4 , ϕ̇= ϕ̇0 +x5 , (17)

where ϕ̇0 = C/r20 and r0 is given by (11).
According to the stability theorem in Lyapunov sense, we are looking for a

function F(x), with x= (x1,x2,x3,x4,x5), which is positive definite in a vicinity of
the unperturbed motion x = 0 (Hahn, 1967). Usually, the first integrals of motion are
used to build the Lyapunov function. Therefore, we consider the energy integral (7),
divided by µ/2, for the perturbed motion

F1(x) = x22 + (r0 +x1)
2x24 + (r0 +x1)

2(ϕ̇+x5)
2 cos2x3− (18)

− 2γ

r0 +x1
− 3γ2

c2(r0 +x1)2
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and the integral of motion (16) for the perturbed motion

F2(x) = (r0 +x1)
2(ϕ̇+x5)cos2x3 . (19)

These functions do not have definite sign in respect with xi, i= 1,5, thus we consider
the function

F(x) = F1(x)−F1(0) +λ[F2(x)−F2(0)] +ν[F 2
2 (x)−F 2

2 (0)] , (20)

where 0 = (r0,ϕ0,0, ϕ̇0,0) denotes the circular unperturbed motion and λ, ν are two
constants. Further, we examine whether there are real numbers λ and ν, so that F(x)
is a positive definite function in a neighborhood of the circular unperturbed motion,
given by 0 = (r0,ϕ0,0, ϕ̇0,0).

Developing in Taylor series cos2x3 in the vicinity of 0 and 2γ/r2+3γ2/(c2r2)
in the neighborhood of r0, neglecting the terms of order 3 and higher and keeping in
mind that from (9) for a circular orbit

r0ϕ̇0
2 =

γ

r20

(
1 +

3γ

c2r0

)
(21)

we get

F1(x)−F1(0) = 4r0ϕ̇
2
0x1 + 2r20ϕ̇0x5−

(
ϕ̇2
0 +

3γ2

c2r40

)
x21 +x22− (22)

− r20ϕ̇
2
0x

2
3 + r0

(
x24 +x25

)
+ 4r0ϕ̇0x1x5

F2(x)−F2(0) = 2r0ϕ̇0x1 + r20x5 + ϕ̇0x
2
1− r20ϕ̇0x

2
3 + 2r0x1x5 (23)

and

F2(x)2−F2(0)2 = 4r30ϕ̇
2
0x1 + 2r40ϕ̇0x5 + 6r20ϕ̇

2
0x

2
1−2r40ϕ̇

2
0x

2
3 + (24)

+ 8r30ϕ̇0x1x5 + r40x
2
5 .

After replacing (22), (23) and (24) in (20), we obtain that the necessary and sufficient
condition for F to have an extremum in xi = 0, i= 1,5 is

λ=−2ϕ̇0

(
1 + r20ν

)
. (25)

We substitute λ from (25) in (20) and write F(x) as a sum of two functions

F(x) = F1(x2,x3,x4) +F2(x1,x5) (26)

with

F1(x2,x3,x4) = x22 + r20ϕ̇
2x23 + r20x

2
4 (27)

a positive definite function in respect with x2, x3, x4 and

F2(x1,x5) = c11x
2
1 + 2c12x1x5 + c22x5 , (28)
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with

c11 = 4ϕ̇2
0

(
r20ν−1

)
+
γ

r30
, c12 = c21 = 2r30ϕ̇0ν, c22 = r20

(
1 +νr20

)
, (29)

a quadratic form in x1 and x5. F2(x1,x5) is positive definite if and only if all prin-
cipal minors are positive. In other words, if c11 > 0 and d= c11c22− c212 > 0. After
some algebra, using (21), these two inequalities lead us to

ν >max

{
3γ
(
c2r0 + 4γ

)
c2r60ϕ̇

2
0

,
3
(
c2r0 + 4γ

)
r30c

2

}
. (30)

It is easy to check that (30) is fulfilled if ν > 3(c2r0 + 4γ)/(r30c
2). Thus F2(x1,x5)

is a positive definite function if ν satisfies (30). Further, F(x) is a positive definite
function, therefore the circular orbit (11) is stable in the sense of Lyapunov. This
result generalize the Lyapunov stability of circular orbits in Newtonian gravitational
field (Dragoş (1976), Goldstein (1980)).

4. CONCLUSIONS

The aim of the study was to examine the stability in the sense of Lyapunov
of circular orbits in Manev two body problem. The central force acting on the bod-
ies differs from the Newtonian force through the term inverse proportional with r3,
therefore further we will compare the properties of the circular motion in Manev and
Newtonian two body problem.

In Manev’s case we obtained that the radius of the circular orbit described by
m2, (m1 > m2), depends on the angular momentum constant C, like in the New-
tonian case. For a given C, the circle described in Manev’s potential has a smaller
radius. The quantity with which the radius of the circular orbit from the Manev case
is smaller than the radius from the Newtonian case does not depend on C.

From C = r20ϕ̇0 we get that the angular velocity on the circular orbit is con-
stant, the motion is uniform. Using the relation between the radius of the circular
orbit in Manev and Newtonian case, we get that for a given C, between the corre-
sponding angular velocities exists the inequality ϕ̇0M =C/r20M >C/r20N = ϕ̇0N . In
other words, for a given angular momentum, the secondary body in Manev two body
problem has a higher angular velocity then in Kepler problem. In addition, the period
of the circular motion in Manev two body problem is smaller then in Newtonian case,
because TM = 2π/ϕ̇0M < 2π/ϕ̇0N = TN .

In table (1) we gathered the results about the stability in sense of Lyapunov of
circular orbit in Manev and Newtonian two-body problem. The radius of the orbits
in these two cases are different for a given C, but the analytical expression for the
relation between the unknown constants ν and λ is the same. Even so, for a given
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Table 1

Circular orbits in Manev and Newtonian potential. The properties of the circular orbit in the

Newtonian potential are from Dragoş (1976).

Manev Newton

Radius of circular orbit (r0) C2

γ

(
1− 3γ2

C2c2

)
C2

γ

Relation between

ν and λ λ=−2ϕ̇0

(
1+ r20ν

)
λ=−2ϕ̇0

(
1+ r20ν

)
Necessary and sufficient

condition for the stability ν >
3(c2r0+4γ)

c2r30
ν > 3

r20
of the circular orbit

value of angular momentum C, we can obtain different values for λ and ν, which
assures the stability of the circular orbit. The necessary and sufficient condition for
the Lyapunov stability of the circular orbit in Manev potential is reduced to that from
the two-body problem in Newtonian potential. Therefore we can conclude, that the
results from Manev two-body problem generalize those from the classical Newtonian
case. The addition of the term inverse proportional with the third power of the dis-
tance between the bodies let us explain certain dynamical phenomena unexplained
in the Newtonian gravitational field, but it does not destroy the Lyapunov stability of
the circular orbit.
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