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Abstract.  We find a very interesting transformation for regularization of the coordi-
nates and time for the restricted three-body problem. The new regularization can give
us significant informations regarding the behavior of the dynamical system near the
singularity point.
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1. INTRODUCTION

Regularization is originally defined as the elimination of singularities occurring
in the equations of motion by properly selected variables (Szebehely, 1967). From
Newton’s law, we know that the bodies interact by means of a force which is pro-
portional to the inverse of the squared distance. As the two bodies approach each
other (close approach), their distance tends to zero and, consequently, the differen-
tial equation describing the dynamics of the system becomes singular when the two
bodies collide. From the theoretical point of view, the singularity due to binary col-
lisions between point masses can be handled by means of the regularization theory
(Waldvogel, 1972; Erdi, 2004).

We know a lot of methods in the regularization theory for the 2-body problem,
for instance the Euler method (Euler, 1765), Levi-Civita method (Levi-Civita, 1906)
and the Kustaanheimo-Stiefel method (Kustaanheimo et al., 1965). Many studies
of the regularization problem are in the restricted 3-body problem, where we have
2 singularities. We can regularize local (one of them), or global. Birkhoff (1915);
Thiele (1896); Burrau (1906); Lemaitre (1955); Arenstorf (1963) and many other
researchers studied the regularization of the restricted three-body problem (Aarseth
etal., 1974).

In this article we construct a new regularizing transformation, which depends
on the right selection of the coordinates and time transformation. This new regula-
rizing transformation has its own advantage compared to the Levi-Civita regulari-
zation, because it preserves the form of the regularized trajectory.
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2. THE RESTRICTED THREE-BODY PROBLEM

Denoting S; and S5 the components of the binary system (whose masses are
m1 and my), the equations of motion of the test particle (in the frame of the restricted
three-body problem) in the coordinate system (S1,z,y,2), (the physical plane) are
(Roman et al., 2012; Roman, 2011):
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These equations have singularities in the terms % and % (Mioc et al., 2002; Csil-
lik, 2003; Waldvogel, 1982, 2006). In order to regularize the equations (1)-(3), we
introduce the generalized coordinates q1, g2, g3 and generalized momenta p;, po,
ps (Boccaletti et al., 1996; Roman et al., 2012), and write the Hamiltonian and the
canonical equations of motion:
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The generalized coordinates and the generalized momenta were:
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The canonical equations have the general form:
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The canonical equations obtained from equations (1)-(3) have, in the (S1,q1,92,93)
coordinate system, the explicit form:
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For simplicity, we shall consider in what follows that the third body moves into the
orbital plane (z = 0).
3. THE LEVI-CIVITA REGULARIZATION

We briefly present the well-known Levi-Civita regularization methods (Roman
et al., 2012). For the regularization of the equations of motion in the (q1,S51,¢2)
coordinate system, we shall introduce new variables (); and ()2, connected with the
coordinates ¢q; and gz by the Levi-Civita equations (Levi-Civita, 1906):

n=Qi-Q3, ©=2Q:1Q, (16)

Using Levi-Civita’s coordinate transformation f = ¢ = Q3 —Q3, g=q2=2Q1Q>,
the equations of motion of the restricted three-body problem becomes:
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where
o= Q+Q;
o= Q- Q-1+
with the new Hamiltonian
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Introducing a time transformation for the new equations of motion (17)-(20), the
motion of the system is slowed down, in order to observe and study the movement of

the system around the singularity points (Roman et al., 2012; Mikkola et al., 1996;
Castilho et al., 1999).

21

4. THE NEW REGULARIZATION

We propose a new regularizing transformation, to avoid the singularities from
the equations of motion (10)—(11), (13)—(14). As in the Levi-Civita regularization
method, we have two transformations for the regularization procedure: coordinate
transformation, which gives the shape of the orbit, and time transformation, which
makes the slow-down motion (Celletti ef al., 2011; Jiménez-Perez et al., 2011).

4.1. COORDINATE TRANSFORMATION

The first step performed in the process of regularization consists in introduction
of new coordinates (1 and ()2. Let us introduce the generating function S, (Stiefel
etal., 1971):

S =-p1f(Q1,Q2) —p29(Q1,Q2) (22)
a C? function. Here f and g are harmonic conjugated functions, with the property
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with P, P» as new generalized momenta, or explicitly
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Let us introduce the following notation:
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The new Hamiltonian with the generalized coordinates ()1 and Q2 and the general-
ized momenta P; and P is:

1
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In our new method of regularization, the new variables (1 and ()2, are connected
with the coordinates ¢; and g2 by the hyperbolical transformation:

q1 =sin(@1)cosh(Q2), g2 = cos(Q1)sinh(Q2). (26)

The equations (26) transform the points S1(0;0) and S2(1;0) from the physical plane,
into the points S1(0;0) and S2(1.57;0) in the regularized plane.
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Then, the canonical equations (10)—(11), (13)-(14) become:
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For the hyperbolic regularization we can postulate the following theorem:
Theorem
The hyperbolic regularization preserves the form of the trajectory of the test particle,
if the initial coordinates Q1o and Q2o have absolute values smaller than 1.
Proof:
Expanding into Taylor’s series the equations (26) writen for the initial position, we
obtain:
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If Q10 <1 and Q2p < 1 we obtain g9 =~ Q19 and gop = Q2. So, the initial posi-
tions into the physical plane and into the hyperbolical regularized plane have similar
coordinates. Idem for initial momenta. So, the trajectories are resemblant.

4.2. TIME TRANSFORMATION

The second step performed in the process of regularization consists in the time
transformation. In order to solve the Hamiltonian equations (27)-(30), we introduce
the fictitious time 7, and making the time transformation j—i = 7373, the new regular

equations of motion become:
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Now, the equations of motion of the test particle do not have singularities.

5. APPLICATION

In order to emphasize the advantage of the hyperbolical regularization, we
made a numerical application, for the Earth-Moon binary system, which is character-
ized by the mass ratio ¢ = 0.0123. We integrated the equations of motion (10)—(11)
and (13)—(14) in the physical plane (S1,q1,q2), considering the initial conditions:

q10=—05, g20=0.1, pio=—0.5, pypo=-05.

The trajectory of a mass point is given in Figure 1, where Py represents the initial
position. The initial conditions for equations (27)-(30) are obtained by solving the
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systems:

{ qi0 = sin(Q10) - cosh(Q20)
g0 = cos(Q1o) -sinh(Q20)

{ Py = p1ocos(Q10) cosh(Q20) — p2osin(Q10) sinh(Q20)
Pyy = p1osin(Q1o)sinh(Q20) + p2o cos(Q10) cosh(Q20)

0.4-_
0.3-_
0.2—_
0.1
g2 u-_
-0l l
-0.2—_

-0.3 4

04

Fig. 1 — The trajectory of the test particle in the physical plane. Here, Py(—0.5;0.1).

By consequence, the equations of motion (27)-(30) must be integrated with
initial conditions:

Q10=—0.52, Q0=0.11, Pg=—-0.46, Py=-—0.41.

The trajectory of a mass point in the regularized plane (51, @1, Q2) is given in Fig.2a.
This trajectory can be compared with the one obtained by applying the Levi-Civita’s
method, integrating the equations (17)-(20), and is given in Fig.2b.
The initial conditions for equations (17)—(20), (Levi-Civita case) are obtained
by solving the systems:
{ g0 =Q%— Q3% { Py =2p10Q10 + 2p20Q20

q20 =2Q10Q2 Py = —2p10Q20 + 2p20Q10
The corresponding initial conditions in the Levi-Civita case are:

Qi0=—0.07, Qu=—-0.71, Pig=0.78, Pyy=—0.64.

It is easy to remark that the hyperbolic regularization preserves the form of the
trajectory better than the Levi-Civita method (Fig.1 and 2a are very similar).
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Fig. 2 — The trajectory of the test particle in the regularized plane, using (a) the hyperbolic
regularization (where Pp(—0.52;0.11)) and (b) the Levi-Civita regularization (where
Py(—0.07;—0.71)).

6. CONCLUSION

Comparing the hyperbolic regularizing transformation and the Levi-Civita re-
gularization, we remark that the shape of the orbit is different. When we want to ap-
ply a regularization method, we choose the best method for our problem, the method
which gives us more information about the motion near the singularity points. In a
critical singularity point, the study in a regularized plane is recommended, because
many numerical integrators avoid the singularity point. Our proposed new regulariza-
tion method, called the hyperbolical regularization is a very simple and fast method,
which preserves very well the shape of the orbits, and can be effectively used in the
phase space to examine a close approach (collision).
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