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Abstract. The only fields for which the correctness of the point-mass representation
(Newton's theorem) can be proved are those featured by potentials of the form 2/ BrrA + .
The two-body problem in such a field is tackled from the only standpoint of symmetries.
The motion equations, written in Cartesian or polar coordinates, present nice symmetries
that form eight-element Abelian groups endowed with an idempotent structure. It is the
same for McGehee-type coordinates that extend the phase space to collision or escape. All
these groups are proved to be isomorphic. Expressed in Levi-Civita collision-regularizing
coordinates, the vector field of the problem exhibits symmetries that form a sixteen-
element group with the same characteristics.

Key words: celestial mechanics � two-body problem � point-mass approximation �
symmetries.

1.  INTRODUCTION

It is well-known that the only fields that allow rigorously the use of the point-
mass representation (Newton's theorem) are those characterized by the Newtonian-type
force, by the elastic-type force, or by a linear combination of these ones. Accordingly,
the most general model of the two-body problem in such a field is featured by the
potential 2/ BrrAU += , where r  is the distance between particles, whereas A  and
B  are real parameters.

Remark 1.1. The cases 0=A  (purely elastic-type force), 0=B  (attractive
Newtonian gravitational force for 0>A , or repelling radiative force for 0<A ), or
even BA == 0  (degenerate case of the force-free field) are not of interest for us.
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However, for sake of completeness, such situations will be mentioned along this paper.

Of course, the celestial mechanics uses extensively the point-mass
approximation, regardless to the field in which the motion is studied. This remains
however a good approach in investigating the dynamics in fields of Manev-type,
Schwarzschild-type, Einstein, Fock, Mücket-Treder, Reissner-Nordström,
Schwarzschild - de Sitter, etc. (see, e. g., Mioc and Stavinschi 1999a and references
therein). But we have to emphasize that the point-mass approximation is fully correct
only for fields characterized by 2/ BrrA +  potentials.

Some aspects of the problem were tackled by Mioc and Stavinschi (1999a, b, c).
Using McGehee-type regularizing transformations, they described the local flows on
the collision manifold and in its neighbourhood (Mioc and Stavinschi 1999b), as well
as the equilibria of the problem (Mioc and Stavinschi 1999c).

This paper resumes the study of the two-body problem in the point-mass
approximation field (which could also be called gravito-elstic field) from a single point
of view: symmetries. After estabilishing the motion equations and the first integrals of
energy and angular momentum in Cartesian coordinates (Section 2), we point out the
eight-element Abelian group of symmetries that characterize the respective vector field
(Section 3). Section 4 emphasizes an analogous group of symmetries for standard polar
coordinates.

In Section 5 we point out the symmetries that features the motion equations
expressed in collision-blow-up McGehee-type coordinates. Section 6 deals with the
symmetries characteristic to the motion equations written in infinity-blow-up McGehee-
type coordinates. These symmetries also form eight-element Abelian group.

Just for comparison purposes, Section 7 points out the symmetries exhibited by
the motion equations written in Levi-Civita regularizing coordinates. They form a
sixteen-element Abelian group.

Section 8 surveys the main results of the paper. The most important results states
the isomorphic equivalence of all eight-element groups of symmetries pointed out in
Section 3-6.

2. BASIC  EQUATIONS

The two-body problem associated to the potential U  can obviously be reduced
to a central-force problem, by fixing one body (hereafter center) at the origin of
coordinates and studying the relative motion of the other body (hereafter particles). The
motion is planar and is described by the equations
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where )}0,0{(\),( 2
21 Rq ∈= qq  and 2

21 )( Rp ∈= ,pp  are the position
(configuration) vector and the momentum vector of the particle, respectively. The
Hamiltonian of the problem reads

),()(),( qppq UTH −= (2.2)

where 22 /||)T( pp =  is the kinetic energy, whereas 2||||/)( qqq BAU −−=−  is the
potential energy.

Explicitly, the equations of motion read
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Remark 2.1. It is clear that the problem admits the first integral of energy
constant),( == hH pq , or explicitly
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where h  is the energy constant. The first integral of angular momentum

,constant),( 1221 ==−= CpqpqL pq (2.5)

where C  is the angular momentum constant, also holds. However, these integrals will
not play an important role in our search for symmetries.
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3. SYMMETRIES  IN  CARTESIAN  COORDINATES

Proposition 3.1. The vector field (2.3) benefits of eight remarkable symmetries,
( ),,,,, 2121 tppqqSS ii =  ,7,0=i  as follows:
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Proof. One sees immediately that equations (2.3) are invariant to the
transformations described by (3.1).É

Proposition 3.2. Out of the seven symmetries iS , 7,1=i , only three are
independent.

Proof. Consider that 1S , 2S , 3S  are independent each other. One can easily
check that
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Choosing arbitrarily three symmetries in }1,7|{ =iSi  as reciprocally independent, a
structure similar to (3.2) is recovered.É

Theorem 3.3. The set }0,7{ == |iSG i , endowed with the composition law "ο",
forms a symmetric Abelian group with an idempotent structure.

Proof. The composition table below
ο 0S 1S 2S 3S 5S 5S 6S 7S
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0S 0S 1S 2S 3S 4S 5S 6S 7S

1S 1S 0S 4S 5S 2S 3S 7S 6S

2S 2S 4S 0S 6S 1S 7S 3S 5S

3S 3S 5S 6S 0S 7S 1S 2S 5S

4S 4S 2S 1S 7S 0S 6S 5S 3S

5S 5S 3S 7S 1S 6S 0S 4S 2S

6S 6S 7S 3S 2S 5S 4S 0S 1S

7S 7S 6S 5S 4S 3S 2S 1S 0S
can be easily constructed and checked. The Abelian character is obvious. As to the
idempotent structure, it is clear that every element is its own inverse with respect to the
composition law.

4. SYMMETRIES  IN  POLAR  COORDINATES

As usual in central-force problems, w pas to polar coordinates via the
transformations

( )
( )
( ) |,/|pqpqθrv

|,/|pqpqru
,/qqθ

|,|r

q

q

q

1221

2211

12arctan

−==

+==
=
=

&

&
(4.1)

which also introduce the polar components of the velocity. Under these real analytic
diffeomorphism, the vector field (2.3) turn to
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while the first integrals (2.4) and (2.5) become respectively
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;222 222 hBr
r
Avu ++=+ (4.3)

.Crv = (4.4)

The results of Section 3 can be transposed in this new frame under the form of:

Proposition 4.1. The vector field (4.2) has eight symmetries, ( ),,,,,~~ tvurSS ii θ=

,7,0=i  as follows:
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Proof. One can easily check that equations (4.2) are invariant to the
transformations (4.5).É

Let us see what the symmetries (4.5) mean from a physical standpoint.
Considering separately each argument of iS~ , (t,-t)  means motion in the future/past;
(u,-u)signifies outwards/inwards motion; (v,-v)  means clockwards/counterclockwards
motion; finally, ),-( θθ , )-,( θπθ , ),( θπθ +  signify positions shifted each other by

θ2 , θπ 2- , and π , respectively. As to their combinations into symmetries, 1
~S

corresponds to the reversibility of the flow: for each orbit there is another orbit with the
same coordinates and with inverse velocities, all in reversed time. 2

~S  shows that for
every orbit there exists another orbit with inverse θ  and v  coordinates, and so on.

Imitating the proofs given in Section 3 to the corresponding results, we can state:

Proposition 4.2. Out of the seven symmetries iS~ , ,7,1=i  only three are
independent.
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Theorem 4.3. The set }0,7~~ == |iS{G i , endowed with the composition law "ο",
forms a symmetric Abelian group with an idempotent structure.

5. SYMMETRIES  IN  COLLISION-BLOW-UP  COORDINATES

The potential )(qU , the vector field (2.3), and the energy integral (2.4) have an
isolated singularity at the origin )0,0(=q . This singularity corresponds to a collision
particle-center (e. g. Mioc and Stavinschi 2001). To remove it and to obtain regular
equations of motion, we apply a chain of McGehee-type transformations of the second
kind (McGehee 1974). The first step of these transformations, which was already
performed in Section 4, consists of the real analytic diffeomorphism (4.1) that
introduces the standard polar coordinates.

The next steps of the McGehee transformations consist of the real analytic
diffeomorphisms

,
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which scale down the components of velocity, and

dtrds 2/3−= , (5.2)

which rescales the time. The vector field (4.2) becomes
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whereas the first integrals (4.3) and (4.4) turn respectively to

;222 322 hrBrAyx ++=+ (5.4)

.2/1 Cyr = (5.5)
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Remark 5.1. In equations (5.3) we have denoted dsd /)()( ⋅=′⋅ , keeping, by
abuse, the same notation for the new functions of the timelike variable s .

Remark 5.2. In this way we have obtained regular equations of motion. The
phase space was analytically extended to the boundary 0=r , which is invariant to the
flow, because 0=′r  for 0=r . The singularity was replaced by the boundary manifold

{ }Ay,xS,θryx(r,θM 20|),, 221
0 =+∈== . The energy relation (5.4) also extends

smoothly to this boundary.

Remark 5.3. The collision manifold 0M  is homeomorphic to a 2D cylinder or

torus (pasting together the ends of the segment ]2,0[1 π=S ) for 0>A , or to a circle
for 0=A . For 0<A , φ=0M  (the particle cannot collide with the center).

Remark 5.4. The collision manifold does not depend on the energy constant h ,
so every energy level shares this boundary.

Let us formally write ( ),tvur,θSs)yx(r,θS ii ,,,�,,,� =  70,i = . In this way, the
following result can be stated without proof:

Proposition 5.5. The vector field (5.3) benefits of eight symmetries,
( ),,,,�� syxr,SS ii θ=  ,70,i =  wholly similar to (4.5).

Proposition 5.6. Out of the seven symmetries, iS� , ,71,i =  only three are
independent.

Theorem 5.7. The set },|iS{G i 70�
0 == , endowed with the composition law "ο",

forms a symmetric Abelian group with an idempotent structure.

6. SYMMETRIES  IN  INFINITY-BLOW-UP  COORDINATES

Another limit situation is the escape/capture ( ∞→r  in the future/past). This
case also makes the motion equations (2.3), (4.2), or (5.3) singular, and the
corresponding energy integrals, as well. To obtain regular equations of motion, we start
from (5.3) and apply the McGehee-type transformation of the first kind (McGehee
1973)
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1−= rρ , (6.1)

which brings infinity at the origin. Then we use successively the McGehee-type
transformations of the second kind (McGehee 1974)

;
,
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.2/3 dsd −= ρτ (6.3)

Under these real analytic diffeomorphisms, the vector field (5.3) acquires the form
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where we kept, by abuse, the same notation for the new functions of the timelike
variable τ . The first integrals (5.4) and (5.5) become respectively

;222 2322 ρ++ρ=η+ξ hBA (5.4)

.2ρ=η C (5.5)

Remark 6.1. In this way we have obtained regular equations of motion. The
phase space was analytically extended to the boundary 0=ρ , which is invariant to the
flow, because 0/ =τρ dd  for 0=ρ . The singularity at 0=ρ  was replaced by the

boundary manifold { }BSM 2,,0|),,,( 221 =η+ξ∈θ=ρηξθρ=∞ . The energy relation
(6.5) also extends smoothly to this boundary.

Remark 6.2. The infinity manifold ∞M  is homeomorphic to a 2D cylinder or
torus (see Remark 5.3) for 0>B , or to a circle for 0=B . For 0<B , ∞M  is the
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empty set (no escape/capture is possible).

Remark 6.3. The infinity manifold does not depend on the energy constant h ,
so every energy level shares this boundary.

Now, to point out the symmetries that characterize the vector field (6.4), let us
formally write ( ) ),,,,,(�,,,, syxrSS ii θ=τηξθρ′  70,i = . We can state without proof:

Proposition 6.4. The vector field (6.4) benefits of eight symmetries,
( ),ρ,θ,ξ,η,τSS ii ′=′  ,70,i =  wholly similar to (4.5).

Proposition 6.5. Out of the seven symmetries iS ′ , ,71,i =  only three are
independent.

Theorem 6.6. The set }70,|iS{G i =′=′∞ , endowed with the composition law "ο",
forms a symmetric Abelian group with an idempotent structure.

Remark 6.7. Observe, by (5.2) and (6.3), that the independent variable τ  is just
the physical time t . Also observe that we could regularize the motion equations for

∞→r  by starting from the vector field (4.2). The motion equations obtained in this
way also present eight symmetries, iS ′′  )0,7=(i , say, which form a group ∞′′G  with
exactly the same properties as ∞′G .

7. SYMMETRIES  IN  LEVI-CIVITA  COORDINATES

So far, to avoid singularities, we resorted to McGehee-type transformations. But
there is a lot of regularizing transformations we could use. In the sequel, just for
comparison purposes, we shall apply Levi-Civita's transformations

;
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to equations (4.2). The respective vector field turns to
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where we maintained, by abuse, the notation for the new functions of the timelike
variable σ .

Proposition 7.1. The vector field (7.3) has sixteen symmetries,
( ),,,,, σϕθ= wzSS ii  ,15,0=i  as follows:
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Proof. The invariance of equations (7.3) to the above transformations can be
immediately verified.É

Imitating the proofs performed in the case of eight-element groups presented in
the previous sections, we are in the position to state:

Proposition 7.2. Out of the fifteen symmetries iS , ,15,1=i  of the vector field
(7.3), only four are mutually independent.

Theorem 7.3. The set }0,15|{ == iSG i , endowed with the same composition

law "ο" as G , G~ , 0G , ∞′G , ∞′′G , forms a symmetric Abelian group with an idempotent
structure.

Remark 7.4. Comparing the symmetries iS~  )1,3( =i  with the symmetries which

iS  )1,3( =i , it is clear that they have the same physical significance, respectively.

8. CONCLUSIONS

Surveying the results obtained in this paper, we can formulate:

Remark 8.1. The motion equations of our problem, expressed in Cartesian or
polar coordinates, or in (collision-blow-up or infinity-blow-up) McGehee-type
coordinates, present remarkable symmetries that form eight-element Abelian groups
endowed with an idempotent structure.

Theorem 8.2. The groups G , G~ , 0G , ∞′G  and ∞′′G  are isomorphic.

Proof. Each of these groups is an Abelian group with three generators.
According to the Fundamental Theorem of Abelian Groups, they are isomorphic to

222 ZZZ ⊕⊕ .É

Remark 8.3. Theorem 8.2. is not a trivial results. Recall that the phase space
corresponding to 0G  contains the supplementary boundary manifold 0M , whereas the
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one corresponding to ∞′G  (or ∞′′G ) contains the supplementary boundary manifold

∞M .

Remark 8.4. The group G  is not only isomorphic, but also diffeomorphic to G~ .
The same relationship holds between the groups ∞′G  and ∞′′G .

Remark 8.5. Among all these groups, G~  is the closest to the physical
description of the motion, due to the use of both natural polar coordinates and physical
time.

Remark 8.6. Using Levi-Civita coordinates for our problem, we find a sixteen-
element Abelian group of symmetries, endowed with an idempotent structure.

The symmetries pointed out in this paper are of much help in understanding
various aspects of the local flows or of the global flow. Indeed, for every orbit proved
to exist, they point out the existence of many other orbits. Moreover, resorting to
continuity, they are very useful to the study of perturbed problems depending on a
small parameters ε , such that for 0=ε  one recovers the initial unperturbed problem.
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