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Abstract. Given any two-dimensional potential F(x, y), we find (if there exists, of
course) without integration of the pertinent equation of motion a monoparametric
family of orbits of the form f(x,¥)= v+ h(x) = ¢ (whose members are shifted
paralelly to the y-axis) traced by a unit mass material point. The main tool to this end is
the nonlinear in y = f, / f. second order partial differential equation of the inverse

problem of Dynamics (Bozis. 1995). In general. a condition on the given potential is
derived:; in case this condition is fulfilled. the function y can be obtained as the common
root of two polynomial equations. In certain particular cases (isotach orbits. one-
dimensional potentials) the differential equations become ordinary and the solution is
found to completion in a different manner.
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1. INTRODUCTION

The two-dimensional inverse problem of Dynamics, as formulated by
Szebehely (1974) aims to find all potentials V(x, y) which can give rise to a given
monoparametric family of curves f(x. y) = ¢ traced in the xy Cartesian plane by a

material point of unit mass. Szebehely’s equation contains the energy dependence
function £ = E(f(x, y)). which must be known in advance.
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A linear second order partial differential equation in V, involving only the
potential and the family of orbits (not the energy dependence), was provided by
Bozis (1984). This equation can be rearranged in order to face the direct problem,
which consists in finding all the monoparametric families created by a given
potential. The result is a nonlinear second order partial differential equation for a
function y(x, y)=f , | f.» related to the slope of the orbits of the family.

The difficulties in solving the nonlinear partial differential equation are
reduced when considering orbits or/and potentials of a special type. Thus, Bozis
and Stefiades (1993) and Bozis and Grigoriadou (1993) studied the case of
homogeneous families of orbits produced by homogeneous potentials, reducing the
problem to solving ordinary differential equations, while Bozis et al. (1997)
obtained homogeneous families of orbits produced by inhomogeneous potentials
by finding common roots of certain algebraic equations.

The problem we face here is of similar nature. Out of all families f(x, y) = ¢
which a given potential V can create, to find (if there exist, of course) those with
equation f (x, y): y+ h(x)z ¢, in other words: to find families with slope

dy/dx =1/vy =K (x) depending only on the variable x. Such families are

actually plane Bertrand curves (Lipschutz, 1969). It turns out that, in general, the
given potential must satisfy certain conditions. Then the families of orbits are
obtained as common roots of a quadratic and a quartic equation. In some special
cases the quadratic equation may vanish, so one has to deal only with the fourth
order algebraic equation. There are potentials (one-dimensional or producing
isotach orbits) for which it is necessary to work directly with the main equation (8)
and to reduce the problem to solving ordinary differential equations.

2. THE SECOND ORDER PARTIAL DIFFERENTIAL EQUATION

Suppose that the family of planar orbits
fleuy)=c )
is traced in the inertial frame Oxy by a material point of unit mass under the action

of a potential ¥ = V{(x, y). The “slope” function for the family of orbits is given by

%= —1/y, where

, L
feo
The functiony is determined in terms of (1) and also is uniquely determining the
family (1), so it can be referred to as the family of orbits.
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The nonlinear partial differential equation (Bozis, 1995) relating compatible
potentials and families of orbits can be written as

7273—2')’)’;9;"")’” :hs (3)
where

_ Yx _Y)'
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3. SLOPE FUNCTIONS INVOLVING ONLY ONE VARIABLE

We consider the case when the slope function depends only on the variable x
(the corresponding case for y can be handled simi,larly), hence

Y = y(x), “4)

excluding the trivial cases of null ¥ or y'. From now on y' denotes differentiation
of y with respect to the unique variable x. In this case

fx,y)=y+ <, . (5)

¥(x)
and the corresponding potential can be obtained by quadratures (Grigoriadou et al.
1999).

Family (5) has been studied from the viewpoint of programmed motion also,
i.e.: To find compatible pairs of y(x) and H(x, y) so that the members of (5) are
lying inside a preassigned region of the xy plane (Anisiu and Bozis, 2000). It has
been shown that, for adequate preassigned regions, this can be effectuated and that,
in general, there is a unique pair {y(x), V(x, »)}. '

Each of the above orbits (5) is traced with total energy E given by
Szebehely’s equation which, in view of (4)~(5), reads

1+ 72
E:V-—ZWY,—(waVy), (6)

and allows for real orbits (35) in the region where E > V', i.e. in the region defined
by the inequality

14 K.,
= i @)
v

Our goal here is to check whether a given potential adopts families of orbits
of the form (5). To this end we write the main equation (3) as
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Yy @YV, =V v+ Vapiw (g =LA Vo

(8)

k2 b+ ¥y
Denoting by
Pz VX + By
K=2y-V, ©)
L= nyyz + (Vi =¥y 1Y = Vg
we write equation (8) as
Yy Oy VW Vet + Ve V)Y =V (10)

Y - ViYW
The expression P, originally factoring the left hand side of (3), can be identically
equal to zero only if Ky'+L = 0. This is possible (for y = y(x)) only in the
uninteresting case ¥(x,y) = const. In what follows we shall consider P # 0.

Because the left hand side of equation (10) does not depend on y, by
differentiating it with respect to y we obtain

(K,P~KP,)y=LP, ~ L,P. (11)
Adopting for the partial derivatives the notation

v QitiY Cad
Vlj - axiayf 5 L€ {0219'“}9

we can write (11) in the form
Byy'= A3y + Ayy? + Ay + Ay (12)
where |

Ay = =ViaVor + VoV

4y = VooVos + VosVor = ViaVio =V + Vi3 - VoV
A = =V P + ViaVor + VaoP + Vosho = 2VMi (13)
Ay = Vi + Vb

B =30 = Vo)

Comment: If the potential V is such that B = 0, in order to have a function y

compatible with it, it is necessary that the right hand side of (12) is also zero. As
seen from the last of equations (13), this case leads to Vi, /¥y =¥, /¥, with
general solution
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V =g+ h(x), (14)

where g and / are arbitrary functions of their respective arguments.

To find a necessary and sufficient condition which the given potential (14)
must satisfy in order to be compatible with a family of the form (5) is a
straightforward, yet very laborious and tedious task. (The idea is to consider the
cubic equation A;y3 + Ayy% + Ay + A4y =0 and the cubic derived from it after
differentiating with respect to y, obtain the common root for y in terms of the
potential and insert it into equation (3). Sixth order partial derivatives of ¥(x, y) are
expected to appear in the condition).

We prompt to say that potentials of the form (14) generate isotach orbits of
the form (5). These orbits will be studied in Section 4.

Solving (12) for yy', zeroing (w‘)y and taking into account that P = 0, we

are left with a quadratic equation in y
Hyy* + Hyy + Hy =0, (15)

the coefficients A,, H; and H, = —H, containing derivatives of ¥ up to the
fourth order. The explicit expressions for the coefficients are listed in the
Appendix.

If. for the given potential, as generally expected, H, # 0 and H; = 0, then
equation (15) represents a necessary condition so that a solution y = y(x) exists. It is
interesting to note that, in this case, we obtain a couple of mutually orthogonal families.

If only one of H, and H, is zero, we obtain y =0 or y = *l,ie ¥y =0,
cases excluded from the beginning. It may happen that both A, and H; are zero,
in which case relation (15) becomes an identity.

Using again equation (12), we obtain the expression of y as a ratio of
polynomials in y

_ A+ AP+ Ay + 4
i By ’

(16)

Differentiating with respect to x both sides of (16), and substituting y' using (16) itself,
we obtain y" as a ratio of polynomials in vy . This value of y", as well as y' given by
(16), are then substituted in the main equation (10) and provide a quartic equation in y

Ry*+ Ry  +R,y2+ Ry + R, = 0. (17)

The coefficients R,,i = 0,...,4, depend on the derivatives of ¥ up to the fourth

order and they are listed in the Appendix. Computer algebra packages, like
Mathematica or Maple, are of great help in doing the calculations.
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In case H, # 0 and H; # 0, the function y(x) has to satisfy the two
equations (15) and (17). Therefore, the Sylvester determinant (Mishina and
Proskuryakov, 1965) of the corresponding polynomials must be zero and this fact
leads to a condition involving the derivatives of ¥ up to the fourth order.

If only one of H, and H, vanishes, we have no solution (with y,y'# 0) for
our problem. If H, = H; =0, we are left with the quartic equation, which has to

be solved; then the solutions y = y(x) (if any) are to be selected.
After finding the slope function, one obtains the family of orbits (5)
compatible with the given potential. '
Finally, if either ¥, or ¥, are zero, we have B = 0. Since the equations
(15) and (17) were obtained for B # 0, we treat this case on first grounds in
Section S.

4. ISOTACH, ORBITS

Let the given potential be of the form (14). Then all orbits (compatible with
this potential) with y(x) =1/A'(x) are isofach, i.e. they are traced with constant
magnitude of the velocity. Indeed, according to (5) and (14), the potential is of the
form V = V(f(x, y)) and is kept constant along each orbit fx, y) = ¢. Thus, constant
is also the kinetic energy of the moving unit mass. Isotach orbits have been studied
by Szebehely (1963) and by Nahon (1964).

For isotach orbits it is

V, = y,. (18)

Taking into account our restriction to orbits with y depending merely on x,

from (18) we prepare VsV, and express them in terms of ¥, and ¥ . Then we

insert these expressions into equation (3) and obtain the ordinary differential
equation in y = y(x)

" 2 '
Tyt + D

The meaning of the above equation is the following: if the function /(x) in
1
' (x)
orbits corresponding to this y(x) and produced by any potential of the form (14)

(i.e. with arbitrary g) are isotach.

the given potential (14) leads to a function y(x) = satisfying (19), then the

The general solution of (19) is



7 Solvable Version of the Direct Problem of Dynamics 65

Cix +¢y = arcotany - - +YYZ , (20)
where ¢;,c, are arbitrary constants and the subscript zero denotes the principal
branch of the multivalued function arctany.

The relation (20) does not permit us to express the function y(x) (and,
consequently, the corresponding family y + A(x) = c¢) explicitly in closed form. Yet
we know that y(x) can be defined as the inverse of the monotonic function
x = x(y). ,

In spite of (and because of) the above obstacle, we can find the totality of
isotach orbits of the form (5) in parametric form (Bozis and Borghero, 1998;
Anisiu and Pal, 1999) by the following reasoning:

From (20) we get x = x(y,¢;,¢;), and from (5) y = ¢ — A(x) = c - H(y),
where H(y) = h(x(y)). We require, of course, that - dh/dx=1/y, ie.
(dH/dy)(dy/dx) = 1/y, which. by virtue of the general solution (20), leads to

dH /dy = 2y /[¢e;(1 + y?)?] or

1
g el g Q1)
&l # 71

where ¢ is a new (superfluous) constant, which may be put equal to zero.
We conclude that, for any definite pair of constants c,, ¢, , the equations

I A4
x = —(arcy tany — €
& ( 0 Y I Yz 2)

| (22)

Cl(l + ')/2)

!

give, in parametric form, a monoparametric family of isotach orbits of the form (5)
produced by any potential (14) I = I{¢). Varying along each orbit of the family is
the parameter y, wherea§ the parameter ¢ varies from orbit to orbit. One can check

from (22) that indeed, as expected, dy/dx = ~1/7.

5. ONE-DIMENSIONAL POTENTIALS

4

© As we mentioned at the end of Section 3, if the given potential is one-
dimensional (either ¥ = ¥ (x) or ¥ = Wy)), the case needs to be treated separately.
The question is if such a potential is compatible with a family of orbits of the form
(4)<5). It will be shown that the totality of these families can be found, in both
subcases treated below:
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a) For V' = V(x) equation (8) can be written as
" 1 V
Y, Y = o, (23)
, IE T 8
A first integration of (23) leads to

—YI}Y— " %ko, (24)

X

where k is a constant.
For any given potential ¥ = I{(x), from (24) we obtain

Y(x) = £(koV (x) + k)12, (25)

where k, is a second constant, the orbits being real in the region kyV(x) + k; > 0.

Therefore, in this case, the totality of orbits (a three-parametric set) is of the form
(5). Each orbit is traced with total energy E = —(1 + k;)/ ky given by equation (6).

[nequality (7) becomes 27k <0, so we have real orbits only for k; < . they
being allowed in the region of the xy plane defined by the strips V' (x) < -k k,.
(See also Example 4 of Section 6.)

b) For VV = V(y) equation (8) becomes

" V {
R (26)
VAR

Evidently, each side of equation (26) has to be a constant, say b, # 0. (For
by = 0 it is easily seen that the potential ¥ = V;» produces the three-parametric
family of parabolas f(x, y) = y + ¢o(x + ¢;)? = ¢ described in the entire plane
for Vyco > 0 with energy E = Ve + ¥y {(4cy) )

In what follows we shall omit in the potential an additive constant, but ‘we

shall include the multiplicative constant to take care of the allowed region of
motion (Bozis and Ichtiaroglou, 1994). From V,,, /V, = b, # 0 we find

V(y) = b exp(byy) (27)
and from the differential equation 2y-yy"/y'= b, we find its first integral

(by = 2y ) y% = by /¢y (wWhere ¢y # 0, o is a new constant), or

dy  _ b

co — 'Yz ) 26‘0

dx . (28)
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(For ¢ =+ it is found that each potential (27) creates the family
y+(2/b0)ln|x+b2| = ¢, ‘traced, with the energy E=—(1/4)b1b§ exp(chy),

everywhere in the xy plane if 5;<0.)
Further integration of (26) depends on the sign of the constant ¢ . Thus:

by) For ¢y < 0, from (28) we obtain v = /- o tan{[by /(24— co)Ix + ¢;}

and the corresponding three-parametric family
by
2“ —Cy

The orbits (29) are traced with total energy E = b;(1 + ¢) exp(byc) and, according

2

fx,y)=y+-=In =c. (29)
by

x+'cl)

sin(

to the inequality (7), are traced in the entire xy plane for 5,< 0.
b,) For ¢g > 0, from (28) we obtain y = \/Zo_tanh (by /(2\[50—) +¢;] and the
family

fx,y)=v+ 2 sinh(—be +¢p)
2o

= 30
> e, - (30)

parametrized by the constants ¢y, ¢y, c.
The total energy is £ = —b(1 + ¢j) exp(byc) and the orbits are traced in the
entire plane for b, > 0.

In both subcases, equations (29) and (30) are of the form (5) and represent
the totality of orbits traced in the presence of the potential (27).

6. EXAMPLES

Example 1. For the potential

4 ( 4’
Vix,v) = Eok [y —Lj (x6 + 4)
: 4 ! - 8 J

BN

we have H, # 0, H, # 0; the calculations show that the two equations (15) and
(17) have, indeed, a common root. This is y(x) = x> /2.

Example 2. The potential
V(x,y) = 8y +.4xty — x¥ — 6x2

gives H, = H, = 0. Equation (15) is an identity and the only suitable (i.e.
compatible with the given potential) solution of the quartic (17) is y(x) = x> /2.
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Comment: We note that the potentials in Examples 1 and 2 produce the same
family of orbits y —1/x? = ¢, of the form (5). However, members of this family

which are real orbits of each potential are lying in different regions of the xy plane
(Erdi and Bozis, 1994). For the potential in Example 1 the allowed region is given

by y<x*/8- 1/3/4x2 , each orbit being described with total energy E = c,
while for that in Example 2 the allowed region is given by y < x* /4 +1/2x?, the

total energy being E = 8c2.
Example 3. For the potential
V(x,y) = (4x> + )(x* - y)

we have also H, = H, = 0, but since R, =0, equation (17) is now of the third
order and has compatible root y(x) = 2x corresponding to the family

y+(l/2)1nlx] =
The orbits of the family are described in the region y > x* with energy E = 0.
Example 4. For V(x) = -1/x2, x > 0, from the formula (25) we obtain
Y= i(k, - kg /xz)l/z and
fxy) =y k)kx? - ko) (2 = c. G1)

Inequality (7) gives that 2/ky <0, ie. ky, must be negative so that (31)
represents real orbits. If ky > 0, the family (31) is defined everywhere; if k; < 0,
the family is defined in the strip 0 < x < (ko / ky)"' 2. In both cases the total energy
is E=—(1+k))/kg. '

Example 5. For the potential

Vix,y) = y3 + x"y2 +x?

there is no compatibility with a family of orbits with y = y(x), because the

quadratic and the quartic have no common solution.

7. APPENDIX

Hy = Voihish + Vs - MVesho + VisVaaVio + VosVii = ViaVaa¥
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Hy = -VoVosha + VoMV — VoV ab i + VorVos i = VesVoa'in = VesFo2Vio
= VaoVor¥ia + Vihio = VaVosFio + VaooVio + VaolusPin + Viahho

HO = —Hz

Ry = 4V20¥ 0¥ 12Vo1 = ViVedVosVor + VaVa%io = SVa'iVi2Vio — 3Va2VariVePo
+ Vo VolVoiV i + SVl + VeV — ShaVoid + W Vi) + VYo"
+VoVdiVia - 4V21V021V12 — 4V ViV — V022V12V01

Ry = 2VyoViiVor = VeiVi — 4Vala, + Wi = Vos + SVahp —3VaVit + 4VeshiVeho
+ 5V Va0 + 2VaViiVoaVio = Vao'1¥iVie = ¥VnVigVor = 2V iaho + 3WsF@abro
~ 4V Vi = V2VioVaoVor + VosViVor + 3V = 4VaViVor + 3V aVoVaiVin
+ SV ViVos + 2V3VG = 3VisViVin — VasVioViaVor + 2VaiVioh2Vor = SVaP 1o

= 3V51Vo1Vo2 V1o + VisVarVaaPio = 10VaVi¥i3 + 2V VosVor + VoV iV V
=336 oV Viy + 8V Vo Vao¥ 2 — SVps¥orVaoF 2

Ry = ~6V5 Vi Vo + I WiaVag + 3V iaVor + 6V ViVia = 3VosV Vs = 3V 3V
- 3V22V021Vn + 6V12V011”121 + 6V V1 V1aPig = 6VaoVoa V12 Vor + 3V1VoxVosVe
= 3VWVoaVorFy + 6V Fgha = 6V Viohi3 + 6VosoVid = 33 VigVer + 3713V ih
- Vo3V 5%z = Vi VioVar = ¥so¥iiVor — 620V ¥ 2P + V0V oV ie
+ 330" V2P0 + 3VarVioVaoVor + 3VaoV1i¥aiVor = 3Vos¥a0ValVin = o1
= 3V + 6Vl

Ry = 10V, VoV + VTP + VosViiVor + V¥ oVor + 2V21V121V01 + 3V30 MV 0
= WeaWgha = S| = 27305, - SVAVG + VRV = V@] + Vil + Vil
= VosPnVoaVio + SV VolViy = 3VaioValVi — SV 1VoaVio = ViaVioVaoVe:

= 42V 11 V12Vor = 2VosPoPaVer + 2VsVioVaoV i + SVaiV1oh2Vor = 2VaiFiet 26!

Ry = =7 = V") Va1 + Vaghiy = V0V + VoaVie = VarVie)
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