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Abstract. In this article we study the equilibrium of polytropes in a poloidal
magnetic field. We see that the magnetic field is the solution of a nonhomo-
geneous Kuler equation for which we write the general solution. It depends on
the Lane-Emden function. So we determined the exact solution for n = 0, 1.
To study the relation between the magnetic and-the polytropic index we use

the first order Padé approximants for the Lane-Emden function.
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1. INTRODUCTION

The detection of the magnetic field at the stellar surface (see Babcock, 1958)
raised the question of its role in the equilibrium of the star. Earlier, Chandrasekhar
and Fermi (1953) found, using the virial theorem, that there is a maximum value
for the magnetic field above which the equilibrium is lost. The measured values
are below it, so the stars are in equilibrium. But, the problem of the distribution
of the magnetic field in the star raises a quite complicated mathematical problem.
An analytical solution of the problem could be found only if we make some sup-
plementary hypothesis. We shall presume, based on the photometric observations
(Borra and Landstreet, 1980), that at the stellar surface the magnetic field can be
approximated by a dipole with the center in the center of the star and so the field
is weak and has an axial symmetry. We also consider that the star is a complete
polytrope with a given polytropic index n. In this case to obtain the distribution of
the magnetic field in the star we have to solve a singular Sturm-Liouville problem
(see Roxburgh, 1966). But in the particular case of the poloidal magnetic field (see
the decomposition proposed by Liist and Schliiter, 1954), the problem can be easily

solved, because it yields a nonhomogeneous Euler equation. Its general solution
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will depend on the Lane-Emden function. We will see that the first order Padé
approximants, proposed by Pascual (1977), provide us a good approximation of the
problem and its analytic form allows us a qualitative interpretation.

The equilibrium of a polytrope in a magnetic poloidal ficld was studied by
Monaghan (1965). He found the differential equation that provides the magnetic
field, solved it numerically for different polytropic indices and discussed the influ-
ence of the polytropic index n on the distribution of the magnetic field. [urther,
we will show that Monaghan’s differential equation for the poloidal magnetic field
1s equivalent to an Euler equation and write its general solution. The Lane-Emden
function present in this general solution will be substituted by its first order Padé
approximants (Pascual, 1977), fact that permits us a comparison between this so-
lution and a numerical one.

2. BASIC EQUATIONS

To describe the equilibrium in a poloidal magnetic field we will use the equa-
tion of the hydromagnetic equilibrium, the Poisson equation, the Ampére law, the

magnetic monopole equation and the polytropic relation, respectively:

E:—derj);pﬂ, (1)
V24 =4nGp, (2)
curl H = 4%-]') (3)
div H =0, (1)
P=Kp'tw, ’ (5)

in which the notations are usual. Supposing that the star has axial symmetry and
using the spherical coordinates (r, 8, ¢) with r = 0 in the center of the star and # = 0,

the symmetry axis, we obtain that — = 0. Having in mind the representation of

0¢
the general solution of (4) (see Chandrasekhar, 1961) and the simplifications due to
the hypothesis of axial symmetry and poloidal magnetic field, we will obtain that
H = (H,, Hy,0), with:

1 8S 1 oS

T sndof 8= T sind or . (6)
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Taking curl of equation (1) and using (3) we will obtain:

cur] <M> = (7)
p

relation that will be used further to express the dependence of the magnetic field
on the radius. We shall assume, in the first approximation, that the magnetic field
is weak, so it presence will not modify the mass density distribution in the star. So,
p = po(r), where pg is known from the equilibrium of an unperturbed polytrope.

We will consider that the exterior magnetic field is dipolic and in the interior
it is expressed by:

S(r,0) = A(r)sin(0). (8)
To facilitate the evaluation of the magnetic field we introduce the following trans-
formations:
. K(n+1)p=~1
r=af , po=pby , a= _(____)p__ . A= Dp.aly, ©))

4rG

in which we recognize the Emden variables (¢, 6,), introduce a new dimensionless
function 7, (&) proportional to the magnetic field and use the constant of integra-
tion D (see Roxburgh, 1966). This substitution allows us to build the dimensionless
form of (7). So, using (6), (8) and (9) in (7), we get the following nonhomogeneous
second order differential equation:

v 27 . ) .
562 - -57 = _gn’s (10)

where 6, 1s the Lane-Emden function of index n, i.e. the solution of the Lane-
Emden equation of order n:

e (05) = oz (1)

The boundary conditions for the equation (10} are:

, d . |
=7 =0 in £=0 and Edigﬁ-'yn:() in €=¢&, (12)
The first condition says that the magnetic field must be finite in the center
of the star and the second in € = & (with & the polytropic radius, i.e. the first
zero of the Lane-Emden function) reflects that at the surface of the star there is no
discontinuity in the magnetic field.
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3. THE GENERAL SOLUTION OF EQUATION (10)

The equation (10) is a nonhomogeneous Euler equation. With the transfor-

mation € = e' it becomes an equation with constant coefficients:

e~ = (13)

where (t) = yn(e'), 6(t) = 0,(¢). The fundamental system of solutions for (13)
1s:
{7t , ¥}, (14)
so the general solution is:
F(t) = cr(t)e™t + ea(t)e®, (15)
where the functions ¢ (¢) and ¢y(t) are determined from the following conditions:

c(t) et 4 ch(t) e =0
(16)
~ch(t) - et 2eh(t) - e = —0n (1)

Solving (16) and substituting in (15) we find that the general solution is:
Uy [ o 1 .
Fa(t) = —§e2t/€2t92(t)dt+ §e“ /e”‘eg(t)dt + K1e*' + Kqe™t (17)

where the constants K and K are determined using the boundary conditions (12).
Going back from the variable { to E we find the following expression for v, (€):

(@) = -3¢ [em©ie+ 3z [emOurme 2 ay)

which enables us to find the constants K; and Ky using (12):

mi=5/ &6:(5)«%”6:&; ko= [2 [ eorte de}

We note that in (18) and (19) is involved the Lane-Emden function of index n.
But as we know, there are only three cases (n € {0,1,5}) whose exact form could

(19)

=0

be written (see Chandrasekhar, 1939). Further we will use an approximate form of
it to be able to compare our results with the numerical results of Monaghan (1965).

4. CERTAIN SOLUTION FOR EQUATION (10)

Let us substitute in (18) n = 0,1 to get exact solutions [or (10). Forn =0
we get the solution found by [Ferraro (1954), and for n = 1 the Monaghan’s
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solution (1965):

forn=0
_1_ Lo 2 &
60‘—1 66 711(5)—6 _'i'd
forn =1
0, = iz—é%(g) = €siné + 2cos€ — 25?5 + %g?

For other values of n we know only approximate or numerical solutions for
(11). In the sequel we are going to use the first order Padé approximation in € = 0
for the Lane-Emden function! (Pascual, 1977), which means:

60+ (3n — 10)¢2

[1 1]
e = 60 + 3né?

(20)
Choosing n = 1 in (18) and (22) we find the following expression for v;(€)

! , 1
() = 3¢ <138.3339469 4 ggz - _g_“

In(60 + 352)> (21)

. _._55 2005 _ @95 8000\/_ar(tan (%5\/5)

= 22
g (22)
For n = 2, we get v2(&)
1, ‘ 2, 1250 1 100 1
2(6) = =€2 [ ~37.98177011 — Z¢2 4 =2 0 (@
¥2(€) 35 ( 37.9817701 95 +—3 10+£2 5 — In(10 + ¢° )) +3 (23)

4 5 200 4 12500 ¢ 5750 _l_
x(zgé - 57 €2 4+5006 + = @ 9 \/ﬁarctan<mg\/ﬁ>>/g (24)

For n = 3 we obtain v3(¢)

1 52 N 2000000 1 - 20000 1
1458 2187 (20 + 3¢€2)2 729 20 + 3¢2
(25)

! In the neighbourhood of ¢ = 0, the power series expansion of the Lane-Emden

1
v3(€) = 552 <.7999286730 +

function has only even terms. So, we have to approximate a power scrics on ¢2. So, in
fact, here 8y is rather a function of £? than a function of &. This the rcason why 9%1’11
is termed “first order Padé approximant” it being really of first order with respect to ¢?
(not with respect to §).
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Fig. 1. — The poloidal magnetic field for n = 1
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Fig. 3. — The poloidal magnetic field for n = 3.

In figures 1, 2 and 3 we have represented (23), (24) and (25) (thin line) and also
the numerical solution (Monaghan, 1965)% (thick line). Our solution approximates
the numerical one with the mean error 0.3, 0.17 and 0.11 respectively. At the
surface of the star our solution is far from the numerical one, mainly, because we
used a first order Padé approximant in £ = 0 for §,. To overcome this fact we
could use a higher order Padé approximation or to part the star in envelopes in
which we compute different Padé approximants. But these approaches involved

more calculations and complicated the analytical form of the solution.

In figure 4 we analyze the magnetic field at different depths in the star (on
z-axis we represent £/€;, where &; is the first zero of the Lane--Emden function)
and we see that increasing the polytropic index, the main value of the field is found
deeper in the star. The maximum value of the field does not depend strongly on

the polytropic index for stars with strong central condensation, as we can see in

figure 4.

2 The functions yn (£) and By(¢) from Monaghan’s article — dimensionless functions —
are in the ratio —2. So, in fact, we represent in our pictures —2v,(€) and Bg(€).
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Fig. 4. — The magnetic field versus the star depth for n € {0, 1,2, 3};
the first line from the top is for n = 0.
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