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Abstract.  In this paper, we intend to investigate the dynamics of the Circular Re-
stricted Three-Body Problem. Here we assumed the primaries as the source of radia-
tion and have variable mass. The gravitational perturbation from disk-like structure are
also considered in this study. There exist five equilibrium points in this system. By
considering the combined effect of disk—like structure and the mass transfer, we found
that the classical collinear equilibrium points depart from the x—axis. We called these
equilibrium points as quasi—collinear equilibrium points. Meanwhile, this combined ef-
fect also breaks the symmetry of triangular equilibrium point positions. We noted that
the quasi—equilibrium points are unstable whereas the triangular equilibrium points are
stable if the mass ratio p is smaller than critical mass (... Besides the mass ratio, the
stability of triangular equilibrium points depend on time.

Key words: restricted three—body problem, variable mass, disk-like structure, radiation
pressure.

1. INTRODUCTION

Circular Restricted Three—-Body Problem (CRTBP) consists of the movement
of the third body with respect to the two primaries. The primaries move in a circular
orbit and the third body is influenced by but not influences the primaries. In the
classical case, the primaries and the third body are assumed as the point mass (see e.g.
Roy, 2004; Murray and Dermott, 2000). There exist five equilibrium points which
are divided into two categories named collinear equilibrium points L1, Lo, and L3
and triangular equilibrium points L4 and Ls. The collinear equilibrium points are
always unstable while the triangular equilibrium points are stable if the mass ratio
i< pe = 0.038520896504551.

The complexity of nature has made the CRTBP not suitable for some cases.
Therefore, some authors have tried to develop the CRTBP by incorporating various
effects. For instance, Radzievskii (1950) and Chernikov (1970) have considered the
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effect of photogravitation in the CRTBP for mimicking the stellar objects. More re-
cently, the influence of disk-like structure has been incorporated in the CRTBP (see
e.g. Chermnykh, 1987; Jiang and Yeh, 2004). There are several studies that combined
various additional effects in CRTBP. For instance, Singh and Taura (2013) has stud-
ied CRTBP by assuming both primaries are radiating and oblate bodies, together with
the effect of disk-like structure. Nurul Huda et al. (2023) combined the effect of pho-
togravitational and disk-like structure, with addition of oblateness and finite-straight
segment for the primaries, to study the stability of equilibrium points in CRTBP.

Several close binary star systems have been discovered (Price-Whelan et al.,
2020; Tutukov and Cherepashchuk, 2020). It has already studied that some of them
have planets that have mass much less compared to the binary (Gong and Ji, 2018;
Thebault and Haghighipour, 2015). Meanwhile, previous studies also suggest that
there is also the possibility that an asteroid belt-like structure also exists in the binary
system (Bancelin et al., 2015; Jennings, Cordes, and Chatterjee, 2020). In certain
cases, the transfer of mass between binary stars is unavoidable (Qian et al., 2020).
However, accurately predicting how mass moves between close—orbiting stars is still
a major challenge. In the case of CRTBP, the transfer mass between stars in a binary
system can be modelled by the variability of mass of each primary. The study of vari-
able mass in the restricted three-body problem was done starting from the 1930s by
Orlov (1939). More recently, Luk’yanov (2005) studied the CRTBP system in which
the primaries have variable masses but the sum of their masses remains constant.
Singh and Leke (2012) consider the variation of mass of primaries in accordance
with the combined Meshcherskii law. Several studies also consider the variable mass
of the third body (see e.g. Albidah and Ansari, 2023; Suraj et al., 2021; Abouelmagd
and Mostafa, 2015).

In this study, we investigate the possible movement of the infinitesimal mass
in the close binary star system. We used a framework of CRTBP where the binaries
are primaries. We assumed that the stars emit radiation and there is a mass transfer
between primaries. We also considered a disk-like structure surrounding this three-
body system, mimicking the Kuiper or asteroid belt structure.

This paper is outlined as follows. In Section 2, we give a detail about the
equation of motion of the system. The detail about the equilibrium points is given
in Section 3. Section 4 describes the stability of the system. Finally, the conclusion
is given in Section 5. Here we used Mathematica software to conduct a numerical
calculation or algebraic manipulation.
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2. EQUATION OF MOTION

Let the mass of the first and second primaries be m and ms, respectively. The
mass ratio between primaries is represented by = ms/(m1 +ms). Here we defined
the mass ratio as 0 < p < 1 following Luk’yanov (2005). The mass of the primaries
is represented by 1 — p and p. To simplify the problem, we considered the system
in a two dimensional rotational coordinate Oxy with the primaries always laying on
x—axis. The position of the third body is represented by (z, y). The origin of the
coordinate system is located in the position of m;. We take the distance between
primaries as the unit of length and the unit of time is chosen in such a way so that the
gravitational constant is unity.

The radiation force (F3,) has an opposite direction with respect to the gravi-
tational force (Fy). In order to consider the radiation pressure in the CRTBP, we
defined the mass reduction factor ¢ = 1 — (F},/Fy), where 0 < 1 — ¢ < 1. Mean-
while, the disk-like structure effect can be modelled by following Miyamoto and
Nagai (1975). The potential of disk-like structure for planar version is given as
V(x,y) = My/\/1?+T?, where M, is the total mass of the disk-like structure and
r? = 22 + 9?2 is the radial distance of the infinitesimal mass. The mass parameter of
the disk-like structure is M and is assumed to be small compared to the total mass
of the primaries (M, < 1). Here T' = a + b means the density profile of the dust belt,
where a and b are the flatness and core parameters of the disc respectively. Figure
1 shows a graphic representation of the system. It has a center of inertia (A) as its
center. This center is a static point. There is also center of mass (D) that moves
around point A. It has to be noted that in our case the distance between A and D is
so small.

For simplicity, we shall consider conservative linear mass transfer law between
the primaries,

w(t) = .

mq (t) +mo (t)

Here t means time and 0 < ¢t < %, where k is the rate of transfer. It has to be noted

that the sum of mass m; (¢) and ma(t) is constant. We assume that k is much slower

compared to the orbital period of the primaries, i.e. k < %, where 7 is the mean
motion of the two body system,

2M,
’I’L2 =1 + 717%
2+ TP
The reference radius of the disk—like structure is given by 72 = 1 — p+ p? as in Singh

and Taura (2013). Assuming that the transfer mass between primaries is very slow
and that the dominant order in the expansion is the first order, we have

w(t) = w(to) + 1(to)(t —to), 3)

= kt. (1)

2
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Fig. 1 — Schematic diagram of the system in this study.

where we could define [1(tg) = k and p(tp) = o, so that
H(t) = po +k(t —to). )

Note that for pg = ktg, equation 4 reverts back to equation 1. In the case of pg = kto,
the domain for ¢ is (to — %) <t< <to + l_k,”o>.
The equation of motion of the system is given as follows

i —2ny =Wy,

5
ij+ 2nd = W, ©)

where W, and W, mean the partial derivative of W with respect to x and y respec-
tively. The pseudo potential is given by
(I-wWa | Hg M,

1
W = —n?(2* +y?) —un’z + +—+

2 1 ro  (R2+T2)1/2 ©

The first derivatives of the pseudo potential with respect to the third body position is
as follows

(I-waz pge—1)  Myz—p)

W, =n?x —un?—

o (-way wugpy M(y—2k/n)
W, =n"y— 3 T3 T (p2i2\3/2
Ty 5 (R2+1T7?)

Here ¢ and ¢y are the radiation pressure factor for m; and mo respectively. We
consider the same coordinate system in Luk’yanov (2009) where the origin of the
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rotational coordinate is the position of m;, hence

ri=a?+y7,

ri=(z—1)"+y°.
Here r; and ry are the distance of the third body from m; and my. Since the center

of the disk-like structure is the point A, i.e. the point around which the primaries
barycenter orbits, the radial distance of the infinitesimal mass becomes

R? = (z— W)+ (y — 2k/n)?. )

Equation 1 is similar to the equation of motion in Luk’yanov (2009) if the effects
from radiation and disk-like structure are neglected.

®)

3. EQUILIBRIUM POINTS

The equilibrium points are the position where the third body is motionless with

respect to the primaries. By considering & = ¢ = & = y = 0 into equation 5, we have

(- ) |n? M, _(A-war  pe-1)
H (R2+1T2)3/2 3 3 =

1 2 (10)
yln? - M, (-way pey 2kM,
(R2 _|_T2)3/2 Til% 7‘% n(R2 +T2)3/2 ’

The position of equilibrium points are calculated by solving equation 5 for x and y.

3.1. QUASI-COLLINEAR POINTS

Conventionally the collinear points L1, Lo, and L3 are the solution located in
the x-axis (y = 0) with the interval 1 < x < 00,0 <z < 1, and —oo < z < 0, respec-
tively. By considering y = 0 in equation 10, it is clear that the collinear equilibrium
points only exist if M} =0 or £ = 0. Nevertheless, we searched possible equilibrium
points near x-axis (y ~ 0) when M; # 0 and k£ # 0 by calculating the equilibrium
points numerically. Hereafter we called these equilibrium points as quasi-collinear
equilibrium points. The numerical values were obtained by solving equation 10 using
a numerical algorithm in Mathematica.

In order to analyse the influence of each additional effect to the equilibrium
point position, we vary the value of My, k, g1, and gs. Here we consider g = 0.3,
to =0, and T' = 0.2. The resulting time dependence graphs can be seen in Figures
2, 3, and 4. The equilibrium points become quasi-collinear. They shifted slightly
towards the +y axis, due to the existence of mass variation and the disk like structure,
which has the point A (that is not on the barycenter, nor is it anywhere in the x axis)
as its center. According to Figure 2, the position of Ly, Lo, L3 have been affected by
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My. Higher My, makes L, Lo, and L3 position further away from x-axis. Meanwhile,
higher £ means that the position of L, Lo, and L3 are shifted higher with respect
to the original position as time increases (see Figure 3). As shown in Figure 4, by
considering several values of ¢; and g2, we found that the change of ¢; and ¢o also
affects the position of L1, Ly, and Ls.

3.2. TRIANGULAR POINTS

In order to find the position of triangular equilibrium points, we have to solve
equation 10 by considering y # 0. We assume that the position of triangular points in
the modified CRTBP is the perturbed version of classical case (r; = 1;r2 = 1), i.e.

rir=14¢€q,
1 1 (1)
ro =1+ €2,
where €1 2 < 1. By substituting equation 11 to equation 8, neglecting higher order
of €12, and solving for z and y, we have position of triangular equilibrium points as
follows

i
T=—-+¢€—¢
9 1 2,

3 (12)
y:\11+e1+e2.

Following Singh and Taura (2013), we consider equation 11 and equation 12 in equa-
tion 10. Hence, with additional expansion of k to the first order, we obtain

C1eq | My(1-2r)

€1 = ,
! 3 3(r2+T2)3/2 13)
. I My(1—2r.)
? 3 3(r24+T12)3/%
Substituting equation 13 to Equation 12 yields the triangular points L4 and L
1 ¢@—aq
== 14
T3 .
and
V3 2 4 My(1—2r.)
—+ 2 (1-22-q— — s Tl 15
y 5 52— Q2)+9(r§—|—T2)3/2 (15)

It can be seen that the triangular points for this system are identical (to the first order)
with the constant primary mass counterpart, albeit with a (slow) time dependence.
Figure 2 shows the effect of Mj, in the position of triangular points. We observe
that the position of L4 and L5 is not symmetric due to the combination of disk—like
structure and mass transfer. This asymmetric is larger when Mj, is higher. We noted
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Fig. 2 — The position of equilibrium points for M = 0.09 (W), My = 0.05 ("), My = 0.01 (7). Here

k=0.1and g1 = g2 = 0.95.
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Fig. 3 — The position of equilibrium points for £ = 0.01 (M), £ = 0.02 ("), kK = 0.03 (7). Here
My =0.01 and q; = g2 = 0.95.
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Fig. 4 — The position of equilibrium points for g1 = 0.85; g2 = 0.99 (M), g1 = 0.94; g2 = 0.9 ("),

q1 =0.9; g2 = 0.99 (). Here M =0.01 and £ =0.1.
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also that the position of L4 and Ls is closer to the primaries with increasing Mp. In
Figure 3, it is clear that the decreasing value of k£ makes L, closer to the primaries,
in contrast with Ls. From Figure 4 we observe that radiation pressure has an impact
on the location of triangular equilibrium points. The location of L4 and L5 are closer
to the source of radiation pressure when the radiation pressure gets stronger, either
for my or ms.

4. LINEAR STABILITY
The stability of equilibrium points are studied by introducing the perturbation
in the equilibrium point (x, o), hence we define
Tr=2xy+ «,
y=yo+B,

where « and 3 are small displacements with respect to the equilibrium points. By
substituting equation (16) into equation (5) and expanding the equation, we get

&—2np =Wo,a+W2,B,

(16)

.. _ 17
B+2né=Wy,a+ W) B,
where
P Gl 01 24 322 | na 3(w—1>2) ( )
Wee =n"+ Tl ( 14— T‘l )+ T‘% ( 14 T% R2+T2 R2+T2
1 u)q1< 3y° ) @(_ 3y® ) M, ( 3(y —2k/n)? )
Wyy =n’+ 3 1+ = 2 + 3 1+ =5 2 +(R2+T2)3/2 1+ (RZ+72) )’
_ _ 30 -—wazy  3ug(z—1)y  3My(z—u)(y—2k/n)
Way = Wya = 7“% + 7‘3 + (R2 —|—T2)5/2 ’
(18)
The characteristic equation is given by
2
At (4n? =W, — W )N+ W W0, — (WS,)" =0. (19)

The solution of this equation is given as follows

Ai:i\/(—bi V2 —4e)/2; i=1,2,3,4. (20)

where b = 4n? — W2, — Wyoy and ¢ = W2, Wgy - (Wgy)Q. The stability of equilib-
rium points can be achieved when all A; are purely imaginary, otherwise we have an
unstable equilibrium point.

Table ?? shows the characteristic roots (A;) of the collinear equilibrium points
by considering several configurations of perturbing parameters. All A; have the form
real which signifies instability. In the range of mass parameter 0 < p < 1 we found




11 Variable Mass, Disk-Like Structure, and Radiation Pressure on the Dynamics of CRTBP 43

Table ICharacteristic roots of collinear equilibrium points with o = 0.02. We used 7'= 0.2 and tg = 0.
Here 7 means v/—1. A2 and A4 have the inverse sign of A1 and A3 respectively

Case | 1—q1 | 1—q2 | My | k | ¢ L L2
A A3 A1 A3 A1 A3

1 1 | 0 01| 0 |30140 | 2.3861 | 2.0087 | 1.8277i | 0.2277 | 1.0169
1 1 0 | 0.1]02]31535 | 2.4749i | 1.9959 | 1.7685; | 0.3204 | 1.0329

1 1 0 |01]03]32054 | 25081 | 1.9568 | 1.7462i | 0.3574 | 1.0407i

2 | 005 | 003 | 0 |01 0 |28645 | 2.2019i | 2.1797 | 1.8750i | 0.2297 | 1.0172i
005 | 003 | 0 |o01]02]30242 | 2.3926i | 2.0553 | 1.8026i | 0.3232 | 1.0335i

005 | 003 | 0 |01]03]30815 | 24290i | 2.0102 | 1.7767i | 0.3605 | 1.0413i

3 | 005 | 003 | 0001 | 01| 0 | 28640 | 2.20217 | 2.1834 | 1.8777 | 0.2292 | 1.0181¢
0.05 | 003 | 0001 | 0.1 |02 |3.0242 | 2.3031i | 2.0585 | 1.8050i | 0.3230 | 1.0344i

005 | 003 | 0001 | 0.1 | 03 | 3.0817 | 2.430i | 2.0133 | 1.7791i | 0.3604 | 1.0423i

4 | 005 | 003 | 0001 | 02| 0 | 28634 | 2.2916i | 2.1835 | 1.8778i | 0.2279 | 1.0178i
0.05 | 003 | 0001 | 02|02 | 31302 | 2.4604i | 1.9741 | 1.7567i | 0.3935 | 1.0497i

005 | 003 | 0001 | 02 |03 | 32118 | 2.5125i | 1.9071 | 1.7187i | 0.4533 | 1.0646i

that b — 4c > 0 for L1, Lo, and L. Consequently we have at least one positive real
for the solution of the characteristic equation. Hence, the collinear equilibrium points
are always unstable.

In the case of triangular equilibrium points, the stability is achieved when 0 <
< Mo, where p. means the critical mass. Following Singh and Taura (2013), the
critical mass is given as follows

1 23 2—q1—qo
c==|1—4/= | -2=———*=
He =75 27 27v/69 o
N <3 (76 =8re)(re +1%) 83+12r§> M,
2 27/69 6v69 ) (r2+12)5/2

It has to be noted that equation 21 differs from Singh and Taura (2013) since, in our
case, we consider the mass transfer. Table 2 shows examples of characteristic roots in
the stability of triangular equilibrium points. All cases have stable equilibrium points
during t = 0 and unstable in ¢ = 0.2 and ¢ = 0.3. We noted that A; and A3 in L4 are
similar to L5 for the case 1 and case 2. However, due to the combination of disk—like
structure and mass transfer effects, this similarity is not sound for case 3 and case 4.
Since, in our case, 1 depends on time, besides L. there exists also a so called critical
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Fig. 5 —t¢ as a function of (a) My, (b) q1, and (c) T, for various values of (a) 1 —q1, (b) T, and (c) Mj,.

time (t.) as follows

te=to+ (e —1o) /K, (22)
where ¢ < t. means stable. Figure 5 shows the effect of perturbing parameters My, q1,
and T on ¢, for the case of £k = 0.1, yp = 0.3, and £y = 3. We noted that ¢, becomes
shorter when M, and 1 — ¢ increase. In contrast, . is longer if T" increases.
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5. CONCLUSIONS

We have studied the influence of mass transfer, disk—like structure, and radi-
ation pressure, on the position and stability of CRTBP equilibrium points. In this
system, we found there are five equilibrium points, where two of them are triangu-
lar equilibrium points, and the others are quasi-collinear equilibrium points. Unlike
the classical collinear equilibrium points, we noted that Ly, L9, and L3 are slightly
departed from x-axis since there exist the effects from disk-like structure and mass
transfer. Moreover, the symmetry of L4 and Ls is broken when we consider the
mass transfer and disk—like structure together. Furthermore, we found that the quasi-
collinear equilibrium points remain unstable. The stability of triangular points de-
pends on the initial mass parameter g as well as the time. Besides ., we found
there exists critical time, t., for achieving the stability of triangular points. The sta-
bility is achieved when 1 < p. and ¢t < t..
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