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Abstract. The potential threat of Near Earth Objects (NEO) requires a constant survey
of the night sky to discover potentially dangerous objects and assess their future impact
odds. Several ongoing surveys relying on human operators or automated techniques
exist. One such example is the EURONEAR blink mini-survey project which over
time developed from a pure manual approach to detecting asteroids to semi-automatic
methods (NEARBY) using image processing and service-oriented approaches. In this
paper, we propose an extension of NEARBY based on an ensemble model comprising
three state-of-art machine learning models, some used in similar approaches. The pro-
posed model is designed for a binary classification problem where candidate images
may contain an asteroid in their center. Validation on a real-life dataset comprising
11,000 images shows that our ensemble model is capable of recovering about 55% of
the asteroids missed by the previous NEARBY automated process while at the same
time having a 0.88 recall on the asteroids already detected by NEARBY. Used together
with NEARBY our model increased the detection rate from 89% to 95%.
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1. INTRODUCTION

The potential threat of Near Earth Objects (NEO) requires a constant survey of
the night sky to prevent future impacts. Existing NEO projects such as EURONEAR
(Vaduvescu and Curelaru, 2006) work towards identifying new NEOs or refining the
orbits of existing potentially hazardous asteroids. Recent research concluded that
there are about 1,000 NEOs larger than 1 km and up to about 70,000 NEOs larger
than 100 m all with a trajectory taking them closer than 50 million km from Earth
(Tricarico, 2017; Granvik et al., 2016; Harris and D’ Abramo, 2015). Out of these,
above 30,000 are currently being tracked (NASA-JPL, 2022).

Over the last decade, several pipelines for automated detection and processing
of moving targets have been implemented. Recent examples include NEARBY (Ste-
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fanut ez al., 2018; NEARBY, 2021) and Umbrella (Stanescu and Vaduvescu, 2021).
The latter study provides a useful comparison between various approaches (Astro-
metrica manual and automatic, NEARBY, and Umbrella) on 15 different Wide Field
Camera fields obtained from Isaac Newton Group of Telescopes with results showing
that the detection accuracy depends on the dataset (and implicitly seeing conditions)
with no clear best method.

1.1. RELATED WORK

These automated methods rely on image processing techniques without learn-
ing from past examples as human operators do. This leads to an increase in the
number of false positives (FP) (i.e. , detected objects wrongly identified as aster-
oids) and false negatives (FN) (i.e. , missed NEOs). As a result, a Machine Learning
(ML) algorithm capable of learning from previous examples could help reduce the
number of false detections and provide results closer to that of a human operator.
Unfortunately, not much work has been done in terms of ML for asteroid detection.
Waszczak et al. (2017) introduces a Random Forest (RF) algorithm with 15 features
for filtering out false positive streak detections. The system is executed on multi-core
systems for faster processing and the authors show the impact of object magnitude
and image size on the false positive rate. Several Convolutional Neural Networks
(CNNs) are tested against Euclid data by Lieu er al. (2019) and results show a pre-
cision € [0.739,0.973] (cf. Eq. 1) and recall € [0.737,0.935] (cf. Eq. 2) depending
on the CNN model and the number of classes (two or four). Another RF algorithm
with 47 features extracted from images is compared against an Isolation Forest unsu-
pervised algorithm in Lin et al. (2017). The RF approach has a recall or true positive
rate (TPR) of about 99% and a false positive rate (FPR) of about 5% on multiple
classes of objects.
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1.2. PROPOSED SOLUTION AND INTEGRATION IN NEARBY

NEARBY (see Fig. 1) is an automated asteroid detection software comprised
of a processing pipeline based on several astronomy image reduction platforms (Ste-
fanut et al., 2018) which include IRAF (Tody, 1986), SExtractor (Bertin and Arnouts,
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1996), SCAMP (Bertin, 2006), and SWARP (Bertin, 2010). The NEARBY Aster-
oids Detection Algorithm identifies asteroid trajectories from the elements detected
by SExtractor in the processed images. The output is a list of potential asteroids that
are to be validated for FPs by a human operator.

Previous tests on a suite of methods have shown that the NEARBY platform
was capable of detecting between ~ 81% (Stefanut et al., 2018) and ~ 89% (Stinescu
and Vidduvescu, 2021) of the total number of asteroids detected by human opera-
tors. Combined with the fact that other image processing-based automated detection
methods, such as Umbrella, have been shown to detect asteroids missed by NEARBY
(Stanescu and Vaduvescu, 2021) it is clear that there is a need to improve its perfor-
mance by reducing the number of FNs specifically.

Our proposed extension is an ensemble method comprised of three state-of-the-
art neural networks (see Sect. 3): Inception (also used by Lieu et al. (2019)), ResNet-
50, and Xception (successor of Inception). Before being sent to the ensemble model,
the FITS images are preprocessed by applying various filters to increase the detection
rate by reducing model overfit. Since we are concerned only with classifying an
image as containing or not an asteroid, we deal with a binary classification problem.
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Fig. 1 — Validation and reporting module of the NEARBY web interface.

2. PROCESSING PIPELINE

The flowchart of our processing pipeline can be seen in Fig. 2. The entire
process consists of two steps: an offline step involving building the model from in-
formation extracted from the FITS file and an online process consisting of real-time
image classification based on the trained model.
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Fig. 2 — Overview of the proposed solution.

Building the trained model Once the astronomical images are obtained and the
ground truth is extracted based on an existing method (e.g.manual blink using Astro-
metrica, NEARBY) the initial image dataset is extended with preprocessed images
based on various filters as shown next. This enhanced dataset is sent to the ensemble
model for training and validation. The outcome of this step represents our classifica-
tion model.

Real-time asteroid detection The trained model is then integrated into the NEARBY
platform pipeline and used for detecting asteroids by feeding it astronomical images
in FITS format. At this stage, the automated detection is used similarly to a filter eas-
ing a human operator’s work by returning only the detections (TPs and FPs) which
represent a fraction of the total number of detections. It is obvious that a high rate
of FNs (hidden in the disregarded images) leads to a considerable number of missed
asteroids as it impacts the number of TPs and FPs.

2.1. DATA PREPROCESSING

Next we describe the algorithms and techniques used for preprocessing the
FITS images to minimize the training overfit while increasing the recall value. A low
number of training images can cause overfitting. This means that the neural network
will learn to predict with high accuracy similar cases while underperforming on a
completely new dataset.

In our images, potential asteroids will appear centered, while the stars appar-
ently jump in sequential images of the same field. The images are centered on the
object by NEARBY and this is due to an agreement to display the image using the
stacking technique as seen in Fig. 3. We stack 3—4 images to obtain one stacked im-
age that will be used in training and validating the model. Having the potential target
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always in the center leads to a trivial problem of searching and validating stacked
images that have apparently stationary objects in their center. However, as we have
found out in searching the test dataset there are cases where these detections are not
asteroids but noise and other artifacts. Section 4 will present some interesting cases.

Fig. 3 — Stacked image with an asteroid in the center and stars as trails.

2.2. DATASET

We have used a dataset comprising 11,106 images taken on several runs be-
tween October 2019 and October 2020 with the Wide Field Camera on the Isaac
Newton Telescope in La Palma, Canary Islands. These were first analyzed with the
NEARBY tool identifying 2,663 (TP) and missing 544 (FN) asteroids, giving a re-
call of 0.83. Consequently, we split the data into training (80%) and testing data
(20%). Once training was complete, we also tested the network on a different dataset
comprised of another 2,385 different images.

Figure 4 shows some raw image examples displayed with various options.

Fig. 4 — Examples of different images with varying background intensity and noise.

2.3. WEAK MODELS PARAMETERS

The ensemble model was implemented using Python 3.8 and TensorFlow 2.5
with CUDA GPU support.
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Table 1

Parameters used for training the weak models.

batch size 16
loss function || binary cross-entropy
optimizer Adagrad
epochs 30

Table 1 shows the parameters used for training the weak models that are later
used in the ensemble (see Sec. 3).

The batch size represents the number of samples that are propagated through
the neural network before updating its weights. These are values modified during the
training process to approximate a function that solves the optimization problem, i.e. ,
enables the neural network to learn. The loss function describes the error between
the neural network’s prediction and the actual classification label. The optimizer is
an algorithm that adjusts the amount by which individual weights are changed.

Except for the optimizer, the parameters remain the same for the ensemble
model. The optimizer used for it was Adam.

The number of epochs was set to 30 and early stopping was used to halt the
training process in case no improvement occurred for more than 10 epochs.

The configuration was chosen empirically, the optimizer parameter having the
smallest effect on the performance of the models.

2.4. NORMALIZATION

The pixel values can vary a lot, depending on the pixel depth as indicated by
the BITPIX value from the FITS header with integer values in the [0,28/7P1X 1]
range. In our case, the BITPIX value is 32. This high distribution of values makes
learning difficult for neural networks which work better with normalized values. To
normalize values we have used the following formula:

max

where z; is the value of the current pixel, min is the minimum pixel value from the
image and max is the maximum pixel value in the image.

After normalizing the values we observed an increase in recall by ~ 10% while
reducing at the same time the overfit.

Figure 5 depicts the pixel values before and after normalization. This example
is a cropped 20 x 20 pixels image with an asteroid in the center (red area). Based
on the normalized values, the neural network will learn to better distinguish areas

containing potential asteroids.
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Fig. 5 — Example of a pixel map before (bottom) and after (top) normalization.

2.5. AUGMENTATION

The next step in image preprocessing is to augment the dataset with additional
images. Augmentation is a technique used in machine learning when the neural
network has to work with a limited dataset and helps obtaining more training data
by providing different views of the same data.

We augmented the dataset by generating 6 times as many images through image
filters and transformations:

* Rotation: by rotating the image 90° three times either clockwise or counter
clockwise;

* Flipping: horizontally or vertically;
* Median filtering: helps for smoothing the image;
* Gaussian or salt and pepper filtering: can be used for adding noise.

These methods are aimed at reducing overfit and providing a richer training set
for the neural networks. However, if the original data is not diverse enough these
methods can contribute to error propagation. For instance, if all the 11,000 images
contain the same type of noise as the top left image in Fig. 4, by rotating them 3 times
we end up with 44,000 images used for training a network unable to make accurate
classifications on noise-free images.
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2.6. CROPPING

The last preprocessing step is to crop our initial 200 x 200 pixels images. It
helps reduce their size and increase the training speed of the neural network. The
crop size also impacts the information in the image contributing to a lower accuracy
of the network. However, when the right size is used, cropping helps neural networks
ignore a large amount of useless information. In our case cropping was the most
effective and customizable step. Through a trial and error approach, we trained crops
of different sizes. The results show an increase in recall from ~ 60 — 70% to ~
80 —90%.

The crop size we settled upon was 75 x 75 pixels. To obtain this value we
started from the original size and went as low as a 20 x 20 pixels crop. A crop
of 40 x 40 pixels was also found to provide good results but was dropped due to a
limitation in the Inception network.

200 x 200 pixel crop 100 x 100 pixel crop
100% 100%
80% 80%
— 60% — 60%
S S
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Fig. 6 — Training process and results on 200 x 200 (top left), 100 x 100 (top right), 75 x 75 (bottom
left) and 50 x 50 (bottom right) pixels crops.

Figure 6 depicts the training results for various crop sizes on the Xception
network. We are interested in the brown and orange bars representing the validation
recall (val_recall label) respectively the training recall (recall label). From Eq. 2
we observe that the recall and the training recall values should be as close to one as
possible. The plots show us how the training recall improves with every new training
image (X-axis) with a validation limit of around 0.9.
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However, in the top plots of Fig. 6 we can easily notice the high overfit value
represented by the high and spiky values of the brown bar with respect to the orange
one. We observe that as the crop size decreases (bottom plots), the overfit is less
visible.

3. THE PROPOSED NEURAL NETWORK MODEL

In this section, we introduce the proposed ensemble neural network and discuss
the CNNs which we chose as weak models.

3.1. ENSEMBLE MODEL

Given the challenging nature of our problem, i.e. , to identify potential asteroids
based solely on the available pixel information, we chose an ensemble model. This
technique is commonly used as a state-of-art approach for prediction and classifica-
tion models as it enables the combination of several pre-trained “weak’” models into a
single one enhancing the performance of the final model. The individual models are
not weak in the literal sense but we use this naming in order to maintain consistency
with the domain-specific literature.

Another reason for choosing an ensemble model was to solve the overfitting
problem. Combining different models can offer some advantages. The way they are
combined and how they use the learned information from the weak models is the key
to achieving high recall rates and accurate results.

Finally, using an ensemble model, makes the results much more reliable than
using a single model. We observed varying recall rates between models. Values
ranged from 82% on the Xception network to 88% on the ResNet. Concatenating
them together with the Inception network not only reduced the overfitting value but
raised the recall value on the whole validation dataset to around 91%.

3.2. WEAK MODELS

When it comes to achieving the best outcome for the proposed ensemble model
we need to have concatenated the best weak models for our problem. This can be
rather difficult as there are many choices based on the accuracy of various neural
networks. We decided on using three widely used state-of-art models: ResNet-50,
Xception, and Inception. They have either won a popular machine learning contest
or are commonly used in binary classification problems such as our own.

* ResNet-50 is a convolution neural network that has 50 layers. The name states
the type of it as being a residual network. Its specific feature is that it uses skip



10 Raul Urechiatu et al. 10

connections (shortcuts) to jump over some layers. The fact that it has so many
layers is somehow the reason an approach that jumps over layers works so well
in this context. Being such an innovative concept of a network, it won the 2015
ImageNet Large Scale Visual Recognition Challenge, which is one of the most
renowned competitions in computer vision and classification contests.

* Google developed the Inception network and it has some interesting features
to be tried against our problem. This is one of the best choices when it comes
to classification problems. One of its issues is that it restricted us from using
cropped images of 75 x 75 pixels. This architecture was also the runner-up at
the competition where ResNet-50 was the winner.

* The Xception architecture, also developed by Google, is the successor of the
Inception. While some argue that it is better than its predecessor, others remain
in favor of the first model. Consequently, we considered an approach that used
both of the models. Even though they are similar, they provide different results
to be included in our current version of the ensemble model.

4. RESULTS

4.1. METRICS

In this paper we focus on the recall (cf. Eq. 2) to measure the performance
of the proposed ensemble model for two reasons: (1) recall is a metric sensitive to
the number of FNs which represent the missed asteroids; and (2) it is similar to the
astronomical purity defined by Lieu et al. (2019) in the scenario where only solar
system objects are considered.

4.2. SUMMARY OF RESULTS

The average recall across runs is 0.88 (with a range between 0.79 and 0.92) if
we exclude from our experiments the asteroids missed by NEARBY and the recall
decrease to 0.83 if we include them (with a range between 0.68 and 0.9). See Fig. 7
for the plotted results. In addition, there is a strong correlation (R? = 0.98) between
the FNs our model produces across runs when excluding the missed NEARBY aster-
oids and when including them. Our classification model missed 312 asteroids from
the 2,663 identified by NEARBY and 243 from the 544 missed by it.

4.3. ANALYSIS OF RESULTS

Our ensemble model was capable of identifying 301 asteroids from the 544
missed by NEARBY (55.3% success rate). Figure 8 shows the results per night of
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Fig. 7 — Recall of our classification results across runs when asteroids missed by NEARBY are
included (blue) and excluded (red).

observation. The recovery of missed NEARBY asteroids had a success rate varying
between 0 and 88%.

Furthermore, the model proved it can correctly identify images not containing
asteroids with an FPR of 0.049 (cf. Eq. 3) producing 351 FPs (images without
asteroids identified as containing one — which should in fact be TNs) and 6,816 TNs
on the dataset excluding the missed asteroids by NEARBY.

Our predictions are binary, leading to either O (no asteroid in the image center)
or 1 (asteroid present in the image center). Figures 9 and 10 show some examples of
images containing correctly identified positives (asteroid in image) and negatives.

A careful analysis of the dataset on FP and FN images led to some interesting
cases demonstrating the challenge of relying solely on image information and image
labeling done by human or automated processes. Figure 11 shows some images
which were labeled by NEARBY as false but contain an object in the center leading
our model to classify them as having an asteroid. A number of challenging images
containing either too much noise or multiple objects have been classified by our
model correctly as seen in Fig. 12. These difficult cases also contain examples where
no center object is visible despite the image being labeled as true (see Fig. 13). In
this case, our model classified the image as false. Finally, in exceptional cases where
an object did exist in the center it was wrongly classified by our model as false (see
Fig. 13).
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Fig. 8 — Classification outcome for our model across runs in the case of asteroids missed by NEARBY.

Fig. 9 — Correctly classified true negative examples.

Fig. 10 — Correctly classified true positive examples.

Our ensemble model was however capable of identifying asteroids missed by
NEARBY. Some examples can be seen in Fig. 14.
From these examples we can see the complexity of cases involving labels and
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Fig. 11 — A set of images labeled as false but with an object in the middle of the image, leading our
model to classify them as containing asteroids.
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Fig. 12 — Exceptional images that were correctly classified as containing asteroids.

data, making it difficult for any ensemble model to learn all the particular cases. The
reality is that we may have to work with either wrong identification or particular
images for which there is no train data as their occurrence is rare or too specific.
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Fig. 13 — Two images incorrectly classified by our network. The first is labeled true but without an
object visible in the middle leading our model to classify it as not containing an asteroid. The second
one was labeled as true and had an object in the middle but our model classified it as not containing an
asteroid.

Fig. 14 — Examples of different images missed by NEARBY and identified by our ensemble model.

5. CONCLUSION

We have shown that our ensemble model made of state-of-rt neural networks
can provide a high recall rate and correctly classify difficult cases which contain as-
teroids. Its efficiency is impacted by particular use cases not known by the model
or by strangely labeled data by the NEARBY platform and validated by human op-
erators. As an improvement of the current NEARBY human validation method, in
terms of time efficiency, our model has a recall of 0.88, missing 312 out of the 2,663
asteroids identified by NEARBY. However, the proposed model proves it can re-
cover 55.3% of the asteroids missed by NEARBY. If we consider that NEARBY
itself detects only 89% of the asteroids identified through the manual blink method
in Astrometrica (Stinescu and Viaduvescu, 2021) this increases the total detection
rate of NEARBY to about 95%. Therefore the model can be used as a crosscheck for
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the current NEARBY method by revisiting the images output as negatives (implicitly
containing FNs) by NEARBY.

The current model relies solely on pixel information that the machine learning
model can extract without performing additional operations such as computing the
FWHM value of the potential target image. While it has proven efficient in detecting
and recovering asteroids missed by the automated process of NEARBY, there is still
room for improvement by introducing additional information (i.e. , FWHM) planned
for future stages of the project.
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