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Abstract. The expanding of meteor networks has allowed an ever increasing precision
in trajectory computations. This translates into a better constraining of the state vector,
and by integration, the orbital torus along which the parent body can be found. Here,
we present a theoretical method of orbit determination which starts from the topocen-
tric coordinates of the meteoroid trajectory. The method of obtaining the meteoroid’s
state vector is based on a larger set of perturbations, which are tracked backwards in
time from the entry point of the meteoroid, to a point outside the Earth’s sphere of influ-
ence. Our method is then applied to a bolide recorded within MOROI network, and the
outcome is compared with the results obtained with previously published techniques.
Finally, a forward and backward propagation in time of the meteoroid is presented using
the described equations of motion, and fourth-order symplectic Neri integrator.
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1. INTRODUCTION

Meteor monitoring devices are widespread worldwide. These recording tools
range from optical and radio antennas, up to detections of meteoroid generated shock
using infrasound arrays, and seismic detectors for larger events e.g. Brown et al.
(2013). Among devices, CCD sensors are the most common tools to monitor the
sky, and due to their availability, are used both by the professional and amateur com-
munity. The cameras range from narrow field, up to the whole sky, and used in
combination of two or more (i.e. in the case of networks), can result in a meteor
trajectory reconstruction.

The Fireball Recovery and InterPlanetary Observation Network (FRIPON),
consisting now of more than 150 cameras, has been monitoring meteoroid entries
since 2015, thereby allowing the characterization of their dynamical and physical
properties (Colas et al., 2020). Furthermore, by modeling the dark flight of the re-

*These authors contributed equally to this work

Romanian Astron. J. , Vol. 31, No. 2, p. 153–169, Bucharest, 2021



154 Simon ANGHEL et al. 2

maining fragments, this can lead to meteorite recoveries (Gardiol et al., 2021).
A similar approach was implemented in Romania since 2016 (Nedelcu et al.,

2018). Following the installation of a FRIPON camera in Bucharest, a first set of
3 cameras was deployed in Transylvania, thus starting the Meteorites Orbits Re-
construction by Optical Imaging network (MOROI). Now, the gradually increasing
infrastructure in Romania consists of 16 stations, 7 of which are already integrated
with the FRIPON international database*.

The MOROI cameras are based on Sony ICX445 sensor (Anghel et al., 2019a;
Colas et al., 2020), which offers a resolution of 1.3 mp to monitor the local sky. The
meteor detection procedure is operated by FreeTure open-source software (Audureau
et al., 2014). For calibrations, the software grabs a long exposure (5 seconds) cap-
ture every 10 minutes. These images are used to keep track of star positions in the
image, and to measure their magnitude, thus calibrating the meteor’s astrometry and
photometry. In addition, the captures can also be used to perform local sky quality
studies (Birlan et al., 2021; Anghel et al., 2019b). An increase in the number of cam-
eras in a given area will result in an ample observation mesh, which will help to cross
calibrate the stations, and ameliorate the uncertainty along the trajectory (Jeanne et
al., 2019). This output can be used to better identify meteor showers and forecast
their activity as described by (Egal, 2020) and the references therein. As of 2021,
the IAU Meteor Data Center (MDC)† contains 112 officially “established” meteor
showers, connected with the past activity of the parent object. Many of these parent
objects are just now being discovered by the minor planet surveys, or by the associa-
tions with the already discovered objects (Babadzhanov, 2010; Dumitru et al., 2017,
2018). Moreover, the MDC contains 702 more showers on the working group (i.e.
published in the literature), which are yet to be connected with parent objects.

New showers can arise from the activations of Near-Earth objects. These events
can either be spotted directly (in a fortunate scenario) as presented by e.g. Marsset
et al. (2019), or indirectly, as a new minor stream. Studying the latter is of uttermost
importance as most of minor streams (as in the case of the Working group) cannot be
immediately linked with the source object due to various reasons (e.g. low albedo,
high phase angle, small size). Thus, a proper tracking of the stream’s activity and
dynamical evolution can impose better constrains on the orbital torus, along which
the parent object can be discovered.

For this study, we present a method of orbit determination for a meteoroid
entering the atmosphere. First, we start from the topocentric measurements of a
trajectory and describe the perturbations involved in the near-Earth scenario. Next,
we describe the methods to compute the apparent radiant and orbit and we apply

*https://www.fripon.org/
†http://www.ta3.sk/IAUC22DB/MDC2007/index.php/ (accessed 24 April 2021)
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Fig. 1 – The 2D (a) and 3D (b) representations of the computed trajectory of the
20190502T214139 UT event recorded in the MOROI network. Both representations are based on

cylindrical world map projections. The location of the stations, relief and altitude are also displayed.
The red line and black cross mark the ground projections of the fireball and final point, respectively of
the visible trajectory. The black segment (b) displays the computed length of 100 km at 45◦ latitude.

the computations for a meteor recorded in the MOROI network (Figure 1). Finally,
the meteoroid orbit is numerically integrated with our developed model in order to
identify their plausible source regions, which can eventually lead to the identification
of their parent bodies.

2. METHOD OF ORBIT DETERMINATION

2.1. PATH TO PREATMOSPHERIC ORBIT

An analysis of meteor observations yields the azimuth and the inclination of
the atmospheric trajectory (i.e. a topocentric radiant) of a meteor, its apparent veloc-
ity, and the coordinates of the origin of its visual path (Figure 1). The geometrical
model presented by Ceplecha (1987), allows us to separate the space and time com-
ponents of our measurements and to overcome the problem of temporal accuracy.
The application of this method for MOROI network is described by Nedelcu et al.
(2018).

The meteoroid moves in the field of action of various forces that are modeling
its trajectory. The most important of these is the gravitational force, which comes
mainly from the attraction of the Earth. To study the effect of the nonsphericity of
the Earth’s gravitational field on meteoroid motion involves the consideration of the
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theory of gravitational potential. In consequence, we considered the terms of the
Earth’s gravitational potential up to c50 for zonal harmonics and c33, s33 for tesseral
harmonics.

The other major perturbation for a meteoroid’s motion near to the Earth (in
our case about 200 km altitude over the Earth’s surface) is the atmospheric drag. A
significant number of studies is devoted to the problem of atmospheric drag. In this
article we will consider the drag caused by the rotating atmosphere.

Another perturbation on the object is the effect of the solar and lunar attrac-
tion, which differ from each other only in quantity. The effect of the solar radiation
pressure is another disturbance, which could produce secular variations in the orbit.

Other factors acting upon the motion of the meteoroid can be the effect of the
Earth’s magnetic field, the effect of the electrostatic field existing in the ionosphere
and the effect of the radiation reflected from the Earth, etc. (Zieliński, 1968; Roy,
1988; Montenbruck, 2000; Szücs-Csillik, 2017; Clark and Wiegert, 2011). These
factors produce minimal effects in our case.

Let us take a coordinate system x, y, z with origin in Earth’s center. We are
considering perturbations due to the oblateness of Earth, to the atmospheric drag
and to the luni-solar attraction. The differential equations of meteoroid motion in
rectangular coordinates have the form:

d2x

dt2
=

∂U

∂x
, (1)

d2y

dt2
=

∂U

∂y
,

d2z

dt2
=

∂U

∂z
,

where

U =U00+U20+U22+U30+U31+U32+U33+U40+U50+UA+URP +ULS , (2)
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and the particular terms are respectively
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where µ is the gravity constant G multiplied by the sum of Sun’s and Jupiter’s mass
(in our case µ = 0.00029 AU3/days2), r is the distance from the center of mass to
the meteoroid, R is the equatorial radius of the Earth (R = 0.000042 AU ), c20 =
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−1082.4, c22 = 0.75, s22 =−0.61, c30 = 2.57, c31 = 0.87, s31 =−0.27, c32 = 0.08,
s32 =−0.09, c33 =−0.07, s33 = 0.129, c40 = 2.01, c50 = 0.07 are zonal and tesseral
coefficients, s is the argument of latitude, and ρ is the atmospheric density, CD is the
drag coefficient, A/m is the cross section to the mass of meteoroid ratio, vr is the
meteoroid velocity vector relative to atmosphere, and p is the solar light pressure at
the distance of one AU, µ′,µ′′ are the masses of the disturbing bodies (Moon, Sun)
multiplied by the gravitational constant, r′, r′′ are the radius vectors of the disturbing
bodies, ψ is the Sun-Moon distance angle as seen from the Earth.

Let us consider the simple exponential atmospheric model

ρ= ρp exp

(
rp− r

H

)
, (4)

where ρp is the density at initial perigee point, obtained via the the NRLMSISE-00
model (Picone et al., 2002), rp is the initial distance of the meteoroid from Earth’s
surface and H is the scale height. Let us denote B = m

CDA the Ballistic coefficient,
and we assume that the atmosphere rotates at the same angular speed as the Earth.
Then, the relative velocity vector is

vr = v−ω×r, (5)

where ω is the initial rotation vector of the Earth around the z axis with ωe = 7.29 ·
10−5 rad/sec. The relative velocity vector is vr = (vx+ωey,vy−ωex,vz).

2.2. INITIAL CONDITIONS

Following the equations presented in section 2, from the entry point up to ≈10
lunar distances, this yields an initial heliocentric state vector of the meteoroid. Next,
the aim is to translate the rectangular real-time coordinates into orbital (Keplerian)
elements. These are used to uniquely identify a specific orbit with a set of six param-
eters:

• a [AU] – the semi-major axis;

• i [deg] – the orbital inclination;

• e – the eccentricity;

• ω [deg] – the argument of perihelion;

• Ω [deg] – the longitude of ascending node;

• M [deg] – the mean anomaly or v [deg] - the true anomaly.
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Semimajor axis a is used to compute the total energy of the orbit and together
with eccentricity e, allows us to compute the angular momentum (Figure 2). The me-
teoroid’s angular position in the orbit at a given epoch is defined by the true anomaly
v. For that reason, a,e,v give information about the size and shape of the meteoroid’s
orbit, and its location in the orbital plane. The inclination i, the longitude of the as-
cending node Ω and the argument of periapsis ω define the orientation of the orbit
in three-dimensional space (Seidelmann, 1992; Vallado, 2013).

Moreover, the argument of latitude is u=ω+v, measured in the orbital plane
from the ascending node to the radius vector r, and the true longitude of the mete-
oroid at epoch is identified as l=Ω+ω+v. These two new orbital elements can be
used in place of the true anomaly v at epoch.

Motion in the solar system is not restricted to a single orbital plane and for that
reason we consider the Cartesian state vector (r,v), because it entirely defines the
meteoroid’s orbit. Let us mention, as previously marked, that the classical orbital
elements (a,e, i,Ω,ω,v) are useful in visualizing, in our case, the meteoroid’s orbit.
Figure 2 shows the relationship between the orbital plane coordinate system and the
reference plane system.

Fig. 2 – Orbital motion with respect to the reference plane in space.

The orbital plane is in the perifocal coordinate system (PQW). Perifocal word
states that the main axis xPQW points from the focus to the pericenter (perihelion)
direction, the yPQW axis is in the direction of the meteoroid’s motion, and the zPQW

is perpendicular to the orbital plane along the angular momentum. Let us mention
that for the definition of a coordinate system in a three dimensional space, one needs
only to specify the direction of one of the axes, and the orientation of one of the other
axes in the plane perpendicular to this direction. The third axis follows automatically
in order to complete a right-handed orthogonal set.

Our reference coordinate system is the Earth-centered inertial (ECI) coordinate
system, where the coordinates are defined as the distance from the origin along the
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three orthogonal (mutually perpendicular) axes.
The xECI axis points in the direction of the vernal equinox, the zECI axis

runs along the Earth’s rotational axis pointing North, the yECI axis completes the
right-handed orthogonal system. For example, when considering the motion of the
meteoroid around the Sun, it is common to use heliocentric coordinate system, where
the reference plane is the plane of the ecliptic (Earth’s orbit) and the reference line is
in the direction of the vernal equinox.

In orbital determination studies around the Earth it is necessary to transform
from one coordinate system to another. Therefore, as a first step we use the given
orbital elements to develop a state vector (rPQW ,vPQW ) expressed in the perifocal
coordinate system (PQW).

The polar coordinates in the plane of the orbit are the heliocentric distance r
and the true anomaly v, and the z-component of the meteoroid is necessarily zero.
Therefore, the position vector is given by

rPQW (xPQW ,yPQW ,zPQW ) =

r · cosvr · sinv
0

 , (6)

where the radius vector and the true anomaly are calculated from the following equa-
tions

r = a · (1−e · cosE), (7)

tanv =

√
1−e2 · sinE
cosE−e

.

We note that using simple iterative techniques the numerical solution of Kepler’s
equation gives the eccentric anomaly E:

Ei+1 =M +e · sinEi, i= 0,1, . . . , (8)

with E0 =M as a first approximation.
We can also find the radial ẋ and transverse ẏ components of the velocity vector

in PQW coordinate system by taking time derivatives of the expressions for x and y.
This gives

vPQW (ẋPQW , ẏPQW , żPQW ) =


−
√

µ
p · sinv√

µ
p · (e+cosv)

0

 , (9)

where the semi-latus rectus is p = a · (1− e2). Let us mention that µ is the standard
gravitational parameter. In our case, µ = G · (MS +MJ), introduced above, in Eq.
(3), where MS and MJ are the masses of Sun and Jupiter, respectively.
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Obviously, the coordinates in one system can be expressed in terms of the other
by means of a series of three rotations about the axes.

In the second step, we transform from the perifocal coordinate system (PQW)
to the general (ECI) reference system.

Firstly, with a rotation about the z axis through the angle of the argument of
perihelionω, so that the x axis coincides with the line of nodes.

Secondly, a rotation about the x axis through the angle of the inclination i, so
that the two planes become the same.

Thirdly, a rotation about the z axis through the angle of the longitude of the as-
cending nodeΩ. We can write these transformations by three 3×3 rotation matrices,
denoted by R3(ω), R1(i), R3(Ω).

R3(ω) =

 cosω sinω 0
−sinω cosω 0

0 0 1

 ,

R1(i) =

1 0 0
0 cos i sin i
0 −sin i cos i

 ,

R3(Ω) =

 cosΩ sinΩ 0
−sinΩ cosΩ 0

0 0 1

 .

Therefore, the transformations from the PQW to the ECI coordinate system are

R=R3(Ω)−1 ·R1(i)−1 ·R3(ω)−1,

rECI = R ·rPQW , (10)

vECI = R ·vPQW ,

where R3−1 is the inverse of the matrix R3, and so forth. We note that because all
rotation matrices are orthogonal, the inverse of each matrix is equal to its transpose.
These steps allow us to compute the impact location of an object with known orbit.

Converting the state vector into the unit vector counterpart (ξ,η,ζ), and using
a spherical representation as

dradiant =
√
ξ2+η2+ζ2 (11)

αradiant = tan−1 η

ξ

δradiant = tan−1

√
ξ2+η2

ζ
,

the apparent sky coordinates of the radiant are obtained.



162 Simon ANGHEL et al. 10

Table 1

Fireball radiant and heliocentric orbit

Topocentric radiant

Azimuth 172.215◦

Elevation 40.829◦

Beginning Height 63.80 km

Beginning Latitude 46.43◦

Beginning Longitude 27.87◦

Apparent radiant (J2000)

Right ascension 219.37◦

Declination −2.12◦

V∞ 25.118±0.3 km s−1

Orbital elements (J2000) Meteor Toolkit this work

a, AU 2.8271 2.7391

e 0.7775 0.7594

i, ◦ 6.8080 8.2971

Ω, ◦ 41.9739 41.9385

ω, ◦ 261.9076 258.5741

M (at epoch), ◦ 350.2362 350.4550

Epoch 29 Apr 2019 21:41:39 UT
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3. RESULTS

3.1. THE ORBIT

The relations detailed in section 2 were applied to the 2 May 2019 bolide,
recorded in the MOROI network at 23:41:39 local time (21 UT). The fireball (201905
02T214139 UT), detected from Barlad, Galati and Madarjac (ROVS01, ROGL01,
ROIS01 now, within MOROI/FRIPON) allowed trajectory computations, thus ob-
taining the geocentric coordinates of the object and the apparent radiant (Figure 3).
Next, the conversion into topocentric coordinates resulted in longitude, latitude and
height above ground of the beginning and final point of the atmospheric path (see
Figure 1).

An important aspect of this article is to also describe steps for deriving a he-
liocentric meteoroid orbit. Furthermore, we compared our method with the results
obtained via the Meteor Toolkit (MT) program (v3.5). Details about the functional-
ity of the software can be found in the manuscript by Dmitriev et al. (2015). The
resulted values for 20190502T214139 UT orbit comparison, along with additional
details are presented in Table 1. Also, the representation of both orbits, along with
the state of the Solar System are in Figure 4.

Fig. 3 – The meteor showers listed in the IAU Meteor Data Center represented in a Sanson–Flamsteed
projection. The established showers are represented by the blue circles, while the showers which

appear on the working list are represented by red dots. The apparent radiant of the
20190502T214139 UT event is marked by the yellow star.
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3.2. NUMERICAL INTEGRATION

During the close approaches to the Earth, the meteoroid’s orbit is continuously
perturbed by the planet’s gravity (Vida et al., 2020). Thus, a numerical integrator
was implemented to simulate the long term gravitational dynamics of a meteoroid.

For this, two numerical integration methods were analyzed: a non-separable
fourth-order symplectic integrator (Csillik, 2004; Szücs-Csillik, 2010), and the Runge-
Kutta-Fehlberg integrator. As is generally known, the numerical integration methods
which inherit the symplecticity of a differential equations tend to better approximate
the trajectory of a symplectic differential equation.

Moreover, the fourth-order symplectic integrator scheme is time reversible be-
cause it is symmetric. It is common knowledge that the time reversibility is impor-
tant, it ensures the two first integrals, i.e. the conservation of energy and the area
preserving. For example, in the Runge-Kutta forth-order method, different deriva-

Fig. 4 – The orbit of the meteoroid represented in 3D heliocentric rectangular coordinates, computed
for J2000.
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tives are used, which are evaluated at different times. So, the forward and backward
steps would not match exactly. Obviously, the difference is small, but it is enough to
prevent the fourth order Runge-Kutta integrator from being exactly time reversible.

In our numerical example we require integration in the reverse-time direction
also. Therefore, we are interested to simulate the reverse-time system, and if we use
the fourth-order symplectic scheme to integrate forward in time, reversing the sign
of the time-step of the same integrator to return to initial time t= 0, we will arrive at
our starting point. However, in the case of fourth-order Runge-Kutta integrator, the
scheme leads to an approximately close point to the starting point.

Particularly, the fourth-order Neri (Neri, 1987) symplectic integrator is a mem-
ber of the family of symplectic integrators for solving an initial value problem (Csil-
lik, 2004). The fourth-order Neri symplectic integrator is defined by the formulae:

dz

dt
= DH(z) = {z,H}, (12)

z(t0) = z0,

where H = T +V is the Hamiltonian of the system. The exact time evolution of z(t)
from t= 0 to t= τ is given by

z(τ) = exp(τDH) ·z(0) = exp(τ · (DT +DV )) ·z(0). (13)

The mapping from z = z(0) to z′ = z(τ) would be

z′ =
n∏

i=1

[exp(τ · (DT +DV )] ·z, (14)

where z = (q,p), q = (qx, qy, qz) are the generalized coordinates, p = (px,py,pz)
are the conjugated generalized momenta, and (ci,di), i=1,n is a set of real numbers.
Explicitly,

qi = qi−1+τci ·
(
∂T

∂p

)
p=pi−1

, i= 1,n, (15)

pi = pi−1+τdi ·
(
∂V

∂q

)
q=qi

,

where

c1 = c4 =
1

2−2
1
3

, c2 = c3 =
1−2

1
3

2−2
1
3

,

d1 = d3 =
1

2−2
1
3

, d2 =− 2
1
3

2−2
1
3

, d4 = 0. (16)

The reverse-time symplectic scheme is slightly different from the Eqs. (15) and one
can find it simply by changing the sign of the time, τ.
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The forward and backward simulations of the meteoroid orbit for the 2019
0502T214139 UT event are presented in Figure 5, the initial conditions in ECI co-
ordinate system, using Eq. (10), at t = 0 are qx(0) = −0.7496, px(0) = 0.0211,
qy(0) =−0.6735, py(0) =−0.0055, qz(0) = 2.3436 ·10−6, pz(0) =−3.0701 ·10−8,
stepsize = 0.1.

Fig. 5 – Perturbed meteoroid orbit integrated with the fourth-order symplectic Neri integrator for a
long-time period of time (200000 years) in forward (red) and in backward (blue) directions.

In comparison, using the Runge-Kutta-Fehlberg forth-order integrator with the
same initial conditions for a short-period of time (200 year) in forward (red) and
backward (blue) lines, lead to Figure 6.

As illustrated in the last figures, the symplectic integrator is much more effec-
tive, faster, and with lower errors than the Runge-Kutta-Fehlberg integrator.
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Fig. 6 – Perturbed meteoroid orbit integrated with the Runge-Kutta-Fehlberg forth-order integrator for
a short-time period of time (200 years) in forward (red) and in backward (blue) directions.

As mentioned before, knowing the classical orbital elements one can describe
the meteoroid’s trajectory (see Table 1). In our case, the orbital size defined by the
semimajor axis a shows an orbit between Mars and Jupiter. The orbital shape is
defined by its eccentricity e, which indicates an elliptic orbit. The inclination i de-
scribes the tilt of the orbital plane with respect to the fundamental plane. For our
case, the orbital plane is close to the ecliptic plane and the meteoroid is in direct orbit
(see Figure 5). The right ascension of the ascending node, Ω is used to describe the
orbital orientation with respect to the principal (vernal equinox) direction. This rota-
tion of the orbital plane, gives us the swivel of the orbit. In our case the meteoroid
moves in the orbital plane in the same direction as the Earth, on the ecliptic. The
argument of perigee, ω, is the angle measured in the direction of the meteoroid’s
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motion from the ascending node to the pericentre. It gives us the orientation of the
orbit within the orbital plane. Finally, the meteoroid’s location in the orbit is repre-
sented by the true anomaly, v, which is the angle along the orbital path from perigee
to the spacecraft’s position. Let us mention, that only the true anomaly changes with
time as the meteoroid moves in its orbit.

4. SUMMARY AND CONCLUSIONS

The meteoroid’s differential equations are presented combining the effects of
the nonsphericity of the Earth’s gravitational field, the effect of the atmospheric drag,
and the effect of the solar and lunar attraction. These equations of motion are solved
numerically including the terms of the Earth’s gravitational potential up to c50 for
zonal harmonics and c33, s33 for tesseral harmonics. These were used to compute
the initial state of the meteoroid. For the initial conditions conversion, we completely
described and wrote a Matlab code of the transformation from the orbital elements
of the meteoroid to the ECI reference coordinate system (Eq. 10).

For the studied bolide, the initial orbital state vector obtained with our method,
differs slightly (< .1%) from the results obtained via the Meteor Toolkit software.
Taking into account the larger number of perturbing forces, we consider our methods
to be a better approximation of the meteoroid’s orbit. Moreover, to integrate the
perturbed motion of the meteoroid (Eqs. 1, 2, 3) forward and backward in time, we
developed a Matlab code using the fourth-order symplectic Neri schema (based on
Eqs. 15, 16).

Our goal was to build and model a high precision meteoroid orbit determination
explained in details, a basic article that can be used be anyone interested in trajectory
calculation of meteoroids.

A future work will include a larger data set, focusing on individual meteor
streams, to better understand the impact of each perturbatory component in the dy-
namical evolution of meteoroids.
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