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Abstract. In this paper, we go deeper into the study of the two-body problem associ-
ated to a Buckingham type potential (Popescu, 2014). We consider the McGehee-type
transformations to write the basic equations of motion and the integrals of energy and
angular momentum. Then we investigate the equilibria for all possible situations by
varying the parameters of the field and the angular momentum constant in the three
cases: negative, zero, and positive energy. We find the number of equilibria for each
such case.
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1. INTRODUCTION

The Buckingham potential (Buckingham, 1938) was used in many studies for
the simulations of both attractive and repulsive intermolecular and gravitational forces.
It is considered a simplification of the Lennard-Jones potential (for Lennard-Jones
potential see, for example, Mioc et al. (2008a), Mioc et al. (2008b)). The Buck-
ingham potential describes the Pauli repulsion energy (the repulsive part is exponen-
tial) and van der Waals energy for the interaction of two atoms that are not directly
bonded, as a function of the interatomic distance r,

U (r) =Aexp(−Br)−M
r6
, (1)

where A, B and M are parameters. The Buckingham potential being an empirical
approximation, the parameters can be fitted to reproduce experimental data in several
phenomena from physics, astrophysics, astronomy and chemistry.

In Popescu (2014), we considered the two-body problem associated to the
Buckingham potential. We described two limit situations of motion, collision and
escape, and provided the symmetries that characterize the problem.

In this paper, our goal is to find the equilibria of the corresponding central-force
problem. This is not so simple as for other potentials encountered in many problems
of mechanics, because Buckingham’s potential has an exponential part. Also, the
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Seeliger’s potential has such an exponential part (see Popescu et al., 2010). Sec-
tion 2 resume the basic equations of the problem after a sequence of McGehee-type
transformations to remove the singularity, regularizing all these equations. Section 3
tackles the equilibria of the problem. We leave aside the equilibria corresponding to
the collision manifold and infinity manifold (already studied in Popescu, 2014), deal-
ing only with those for which 0 < r < +∞. Section 4 formulates some concluding
remarks.

2. EQUATIONS OF MOTION

The Buckingham potential being a central one, the associated two-body prob-
lem can be reduced to a central-force problem. We fix one particle as centre at the
origin of the plane R2 and we study the relative motion of the other particle. The
position (or configuration) vector of this particle is denoted by q=(q1, q2) and the
momentum vector by p=

.
q, p= (p1,p2) . Then, the Buckingham potential is

U (q) =Aexp(−B |q|)− M

|q|6
, (2)

where A > 0, B > 0, M > 0 are constants and the kinetic energy of the unit-mass
particle is T (p) = |p|2

2 . The following equations describe the motion:

.
q=

∂H

∂p
,

.
p=−∂H

∂q
, (3)

where H is the Hamiltonian

H (q,p) := T (p)−U (q) =
|p|2

2
−Aexp(−B |q|)+ M

|q|6
. (4)

It results that
.
q1 = p1
.
q2 = p2

.
p1 =−AB

q1√
q21 + q

2
2

exp
(
−B

√
q21 + q

2
2

)
+6M

q1(
q21 + q

2
2

)4
.
p2 =−AB

q2√
q21 + q

2
2

exp
(
−B

√
q21 + q

2
2

)
+6M

q2(
q21 + q

2
2

)4 .
(5)

The phase space is Q×P, where Q=R2r{(0,0)} is the configuration space
and P=R2 is the momentum space. The problem admits two integrals in involution,
energy and angular momentum:

H (q,p) =
h

2
= const., L(q,p) = q1p2− q2p1 = C = const., (6)

where h is the energy constant and C stands for the constant of angular momentum.
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The potential, the motion equations and the energy integral have an isolated
singularity at the origin, which corresponds to a collision particle-centre. To regu-
larize equations (5), we apply a sequence of McGehee-type transformations of the
second kind (McGehee, 1974).

It follows (see Popescu, 2014):

r = |q| ,

θ = arctan

(
q2
q1

)
,

ξ =
.
r =

q1p1+ q2p2
|q|

,

η = r
.
θ =

q1p2− q2p1
|q|

,

x= r3ξ,
y = r3η.

(7)

Rescaling the time through ds= r−4dt and writing ′ = d/ds, the equations of motion
become:

r′ = rx
θ′ = y
x′ = 3x2+y2−ABr7 exp(−Br)+6M
y′ = 2xy.

(8)

The first integrals now read respectively

x2+y2 = hr6+2Ar6 exp(−Br)−2M, y = Cr2. (9)

3. EQUILIBRIA

For finding the equilibrium points for the two-body problem associated to
Buckingham potential, we will use the motion equations given by the system (8)
and the integrals (9). We observe that θ does not explicitly appear in either the right-
hand side of motion equations or first integrals. So, we may discard the equation
corresponding to θ. Thus, we are interested only in the system formed by

r′ = rx
x′ = 3x2+y2−ABr7 exp(−Br)+6M
y′ = 2xy.

(10)

and the integrals (9). We obtain

x2 = hr6+2Ar6 exp(−Br)−C2r4−2M. (11)
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The left-hand side is nonnegative. So, for every fixed values of h and C, the regions
where real motion is allowed are given by

hr6+2Ar6 exp(−Br)−C2r4−2M ≥ 0. (12)

The effective potential is defined by

Veff (r;C) =
C2

r2
−2Aexp(−Br)+2

M

r6
. (13)

For a fixed energy level h, the regions of possible motion are featured by the condi-
tion Veff (r;C)≤ h.

The equilibria of the problem are of the form (r,x,y) with r > 0, x = 0 and
must be solutions of the system

y2−ABr7 exp(−Br)+6M = 0,
y2 = hr6+2Ar6 exp(−Br)−2M,

y = Cr2.
(14)

Eliminating y between these equations, compatibility relations have to be verified:

ABr7 exp(−Br)−6M = hr6+2Ar6 exp(−Br)−2M = C2r4. (15)

We consider two cases according to the values of the angular momentum C,
namely C = 0 and C 6= 0.

Case I. For C = 0 (rectilinear motion), eliminating the terms that contain ex-
ponentials between the relations (15), we obtain

hBr7−2MBr+12M = 0. (16)

We shall discuss its positive roots using Descartes’ rule of signs.
Let f (r) :=ABr7 exp(−Br)−6M and g (r) := hBr7−2MBr+12M.
The equilibria have to verify both equations: f (r) = 0 and g (r) = 0.
We observe that:
• f ′ (r) = 0 if and only if r = 7

B ;
• f is strictly increasing for r < 7

B ;
• f is strictly decreasing for r > 7

B ;

• f ′′ (r) = 0 if and only if r = 7±
√
7

B ;

• f is convex if r < 7−
√
7

B or r > 7+
√
7

B ;

• f is concave if r ∈
(
7−
√
7

B , 7+
√
7

B

)
.

There are several cases and we investigate them according to the energy level.
1. Negative-energy.
If h < 0, then g (r) has one positive root, r̃, using Descartes’ rule of signs. We
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denote f
(
7
B

)
by E,

E :=
A

B6

(
7

e

)7

−6M.

1.1. If E < 0, then f (r) has no positive root, hence no equilibrium.
1.2. If E = 0, then f (r) has one positive double root, r= 7

B , but g
(
7
B

)
<

0. This means that there is no equilibrium.
1.3. If E > 0, then f (r) has two positive roots, r1 and r2. If r1 = r̃ or

r2 = r̃, then we have an equilibrium. If r1 and r2 are different of r̃, hence there is no
equilibrium.

2. Zero-energy.
If h = 0, then g (r) has one positive root r̃1 = 6

B . Since f
(
6
B

)
= 0, it follows

that the problem admits one equilibrium, r = 6
B .

3. Positive-energy.
If h > 0, g (r) has two positive roots or no positive root at all, using the same

Descartes’ rule of signs.
3.1. If E < 0, then f (r) has no positive root, hence no equilibrium.
3.2. If E = 0, then f (r) has one positive double root, r = 7

B .
3.2.1. If h = A

3e7
, g (r) has the positive double root r = 7

B , and we
have an equilibrium.

3.2.2. If h 6= A
3e7
, r = 7

B is not the root of g (r), thus there is no
equilibrium.

3.3. If E > 0, then f (r) has two positive roots, r1 and r2.
3.3.1. If g (r1) = 0 and g (r2) 6= 0, or g (r1) 6= 0 and g (r2) = 0, then

we have a positive root, hence an equilibrium.
3.3.2. If g (r1) = 0 and g (r2) = 0, then we have two different positive

roots, thus two equilibria.
3.3.3. If g (r1) 6= 0 and g (r2) 6= 0, then there is no positive root at

all, therefore no equilibrium.
Case II. For C 6= 0, eliminating the terms which contain exponentials between

the relations (15), we obtain

hBr7−C2Br5+2C2r4−2MBr+12M = 0. (17)

1. Negative or zero-energy.
If h≤ 0, denoting f (r) :=ABr7 exp(−Br)−C2r4−6M and g (r) :=hBr7−

C2Br5+2C2r4−2MBr+12M for r > 0, the equilibria must verify both equations:
f (r) = 0 and g (r) = 0. We write the first equation as

exp(−Br) = C2

AB

1

r3
+

6M

AB

1

r7
(18)

and we denote by u(r) and v (r) the left, respectively the right member. We observe
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that
u′ (r)< 0, u′′ (r)> 0, v′ (r)< 0, v′′ (r)> 0. (19)

We deduce that the function u(r) is strictly decreasing, convex and

lim
r→0,r>o

u(r) = 1, lim
r→+∞

u(r) = 0. (20)

Analogous, the function v is strictly decreasing, convex and

lim
r→0,r>0

v (r) = +∞, lim
r→+∞

v (r) = 0. (21)

It follows that the equation (18) and, as a consequence, the equation f (r) = 0 can
have two or one positive roots, or no positive root at all.

On the other hand, by Descarte’s rule of signs, the equation g (r) = 0 has three
positive roots or one positive root.

Taking into account these two observations, we can analyse the equilibria of
the problem:

1.1. f (r) has two positive roots, r1 and r2, and g (r) has three positive roots.
1.1.1. If g (r1) = 0 and g (r2) = 0, then we have two different positive

roots, hence two equilibria.
1.1.2. If g (r1) = 0 or g (r2) = 0, then we have a positive root, thus an

equilibrium.
1.1.3. If g (r1) 6= 0 and g (r2) 6= 0, then we have not positive root at all,

hence no equilibrium.
1.2. f (r) has two positive roots, r1 and r2, and g (r) has one positive root.

1.2.1. If g (r1) = 0 or g (r2) = 0, then we have a positive root, thus an
equilibrium.

1.2.2. If g (r1) 6= 0 and g (r2) 6= 0, then we have not positive root at all,
hence no equilibrium.

1.3. f (r) has one positive root, r, and g (r) has three positive roots or one
positive root.

1.3.1. If g (r) = 0, then we have a positive root, thus an equilibrium.
1.3.2. If g (r) 6= 0, there is no positive root at all, hence no equilibrium.

1.4. f (r) has no positive root at all, and g (r) has three positive roots or one
positive root. Therefore there is no equilibrium at all.

2. Positive-energy.
For h > 0, using the same Descartes’ rule of signs, (17) has four changes of

sign, therefore four positive roots, two positive roots, or no positive root at all. From
the above discussion concerning (18), we deduce that we can have the following
cases:

2.1. f (r) has two positive roots, r1 and r2, and g (r) has four or two positive
roots.
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2.1.1. If g (r1) = 0 and g (r2) = 0, then we have two different positive
roots, hence two equilibria.

2.1.2. If g (r1) = 0 or g (r2) = 0, then we have a positive root, thus an
equilibrium.

2.1.3. If g (r1) 6= 0 and g (r2) 6= 0, then there is no positive root at all,
therefore no equilibrium.

2.2. f (r) has two positive roots, r1 and r2, and g (r) has no positive root at all,
then no equilibrium at all.

2.3. f (r) has only one positive root, r, and g (r) has four or two positive roots.
2.3.1. If g (r) = 0, we have a positive root, hence an equilibrium.
2.3.2. If g (r) 6= 0, we have no positive root at all, thus no equilibrium.

2.4. f (r) has one positive root, r, and g (r) has no positive root at all. Then,
there is no equilibrium at all.

2.5. f (r) has no positive root at all, and g (r) has four or two positive roots, or
no positive root at all. Therefore there is no equilibrium at all.

In physical terms, this discussion respectively means: two equilibria, one equi-
librium or no equilibrium at all.

Remark. We want to emphasize that there are the situations described for the
equation f (r) = 0.

a) Let f (r) = 0 for A= 1, B = 1, C = 1, M = 1 :

r7 exp(−r)− r4−6 = 0. (22)

We have two positive solutions: r1 = 2.2926 and r2 = 4.4928 (see Fig. 1).
For h ≤ 0, g (r1) 6= 0 and g (r2) 6= 0, hence there is no equilibrium. For h =

2.7406×10−2, we have g (r1) = 0, hence an equilibrium.

Fig. 1 – The equation f(r) = 0 has two positive roots

b) Let f (r) = 0 for A= 1, B = 0.001, C = 0.01, M = 0.0001 :

0.001r7 exp(−0.001r)−0.0001r4−0.0006 = 0. (23)

We have a single positive solution r = 0.94658 (see Fig. 2a).
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For h = −16.085, we have g(r) = 0 and therefore an equilibrium. If h > 0,
g(r) 6= 0 and there is no equilibrium at all.

Fig. 2 – The equation f(r) = 0 has a) one positive root; b) no positive root at all

c) Let f (r) = 0 for A= 1, B = 1, C = 100, M = 1000:

r7 exp(−r)−10000r4−6000 = 0. (24)

This equation has no positive root at all (see Fig. 2b). In this case there is no equilib-
rium at all.

4. CONCLUDING REMARKS

To find equilibria of the two-body problem associated to a Buckingham type
potential is complicated because the potential has an exponential part. Nevertheless,
we removed the exponential from the compatibility relations, obtaining a starting
algebraic equation, which permits a disscution for all possible values of parameters
of the field and the angular momentum constant in the three cases: negative, zero,
and positive energy. We found the number of equilibria for each such case. Our
problem admits equilibria even in the case of nonnegative energy. This situation is not
encountered within the two-body problem in the Newtonian field, where equilibria
occur only for negative-energy levels.
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