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Abstract. This paper investigates wave properties of isothermal plasma around the
Schwarzschild Anti-de Sitter (SAdS) black hole. For this black hole, the 3+1 GRMHD
equations are re-formulated which are linearly perturbed and then Fourier analyzed for
rotating magnetized plasmas. The graphs of the wave number, the phase and group
velocities with the refractive index are used to discuss the wave properties.
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1. INTRODUCTION

One of the most intriguing predictions of general relativity is the existence of
black holes. In fact, they belong to the most fascinating objects predicted by Ein-
stein’s field equations. Although many scientists have been studied from past several
decades to prove conclusively the existence of black holes in the universe, black holes
are still mysterious (Vachaspati et al., 2007). Physicists are grappling the theory of
black holes, while astronomers are searching for real-life examples of black holes
in the universe (Narayan, 2005). There still exists no convincing observational data
which can prove conclusively the existence of black holes in the universe. In recent
years there has been renewed interest in investigating plasmas in the black hole en-
vironment. A successful study of the waves and emissions from plasmas falling into
a black hole will be of great value in aiding the observational identification of black
hole candidates. For this reason, plasma physics in the vicinity of a black hole has
become a subject of great interest in astrophysics. In the immediate neighborhood of
a black hole general relativity applies. It is therefore of interest to formulate plasma
physics problems in the context of general relativity.

In order to investigate the behavior of plasma waves in the vicinity of a black
hole, it would seem, in the first instance, to demand a covariant formulation based on
the fluid equations of general relativity and Maxwell’s equations in curved spacetime.
But this approach has so far proved un-productive because of the curvature of four-
dimensional spacetime in the region surrounding a black hole. Recently, Thorne,
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Price, and Macdonald (TPM) (Thorne et al., 1982; Macdonald et al., 1982; Price et
al., 1982; Thorne et al., 1986) developed a method of a 3 + 1 formulation of general
relativity in which the electromagnetic equations and the plasma physics at least look
somewhat similar to the usual formulations in flat spacetime while taking accurate
account of general relativistic effects such as curvature. The 3+1 spacetime split was
originally developed by Arnowitt, Deser, and Misner (ADM) (Arnowitt et al., 1962)
to study the quantization of the gravitational field. Since then, their formulation
has most been applied in studying numerical relativity Evans et al., 1986). TPM
extended the ADM formalism to include electromagnetism and applied it to study
electromagnetic effects near the Kerr black hole.

Sharif and Sheikh (2007) investigated the behavior of cold plasma waves in the
vicinity of the Schwarzschild black hole horizon. The aim of this letter is to study the
dynamical magnetosphere of the Schwarzschild Anti-de Sitter (SAdS) space using
TPM formalism of the GRMHD equations, and investigate the nature of the waves.
The motivation behind this study is based on some mentionable aspects. The solu-
tions of black holes in Anti-de Sitter spaces are available from the Einstein equations
with a negative cosmological constant. There exist a lot of differences between de
Sitter black holes and Anti-de Sitter black holes. The difference consisting in them
is due to minimum temperatures that occur when their sizes are of the order of the
characteristic radius of the Anti-de Sitter space. For larger Anti-de Sitter black holes,
their red-shifted temperatures measured at infinity are greater. This implies that such
black holes can be in stable equilibrium with thermal radiation at a certain temper-
ature. Moreover, recent development in string M-theory greatly stimulate the study
of black holes in anti-de Sitter spaces. One example is the AdS/CFT correspondence
(Hawking et al., 1999; Chamblin et al., 1999; Mann et al., 1999) between a weakly
coupled gravity system in an Anti-de Sitter background and a strongly coupled con-
formal field theory on its boundary. So the study on the Schwarzschild Anti-de Sitter
black holes is pragmatic and having an important effect.

At first we summarize the GRMHD equations in the SAdS black hole magneto-
sphere in 3+1 formalism and then we investigate the GRMHD equations for isother-
mal plasma in the case of rotating magnetized surroundings. Finally, we present our
remarks. We use units G= c= 1.

2. THE 3+1 SPLIT OF THE SADS BLACK HOLE SPACETIME

In this section, applying TPM formulation, we split the spacetime of the Schwar-
zschild-Anti-de Sitter black hole, which is the solution of Einstein equations with
a negative Λ(= 3/`2) term corresponding to a vacuum state spherically symmetric
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configuration. The metric of the spacetime has the form

ds2 = gµνdx
µdxν

= −∆2dt2 +
1

∆2
dr2 + r2(dθ2 + sin2θdϕ2), (1)

where

∆2 = 1− 2M

r
− r

2

`2
. (2)

Here, M is the mass of the black hole and the coordinates are such that −∞ < t <
∞, r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The metric (1) at large r represents the
asymptotically Anti-de Sitter spacetime.

The SAdS black hole’s horizon is situated at root of the cubic equation

r3− `2r+ 2M`2 = 0. (3)

The only real root of this equation is

rh =
2

3

√
3`sinh

[
1

3
sinh−1

(
3
√

3
M

`

)]
. (4)

Expanding rh in terms of M with 1
`2
� M2

9 , we obtain

rh ≈ 2M

(
1− 4M2

`2
+ · · ·

)
. (5)

The event horizon of the SAdS black hole is smaller than the Schwarzschild event
horizon, rSch = 2M . Therefore, we can write rh = 2Mη with η < 1.

An absolute three-dimensional space defined by the hypersurfaces of constant
universal time t is described by the metric

ds2 = gijdx
idxj =

1

∆2
dr2 + r2(dθ2 + sin2θdϕ2). (6)

The indices i, j range over 1,2,3 and refer to coordinates in absolute space. The fidu-
cial observers (FIDOs), i.e.the observers at rest with respect to this absolute space,
measure their proper time τ using clocks that they carry with them and make local
measurements of physical quantities. The FIDOs use a local Cartesian coordinate
system with unit basis vectors tangent to the coordinate lines, given by

er̂ = ∆
∂

∂r
, eθ̂ =

1

r

∂

∂θ
, eϕ̂ =

1

rsinθ

∂

∂ϕ
. (7)

For a spacetime viewpoint rather than a 3 + 1 split of spacetime, the set of orthonor-
mal vectors also includes the basis vector for the time coordinate:

e0̂ =
d

dτ
=

1

α

∂

∂t
. (8)
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Here α is the lapse function (or redshift factor) defined by

α(r)≡ dτ

dt
=

(
1− 2M

r
− r

2

`2

) 1
2

. (9)

The gravitational acceleration felt by a FIDO is then correspondingly given by

a =∇lnα=
1

α

(
M

r2
− r

`2

)
er̂, (10)

while the rate of change of any scalar physical quantity or any three-dimensional
vector or tensor, as measured by a FIDO, is given by the derivative

D

Dτ
≡
(

1

α

∂

∂t
+V ·∇

)
, (11)

V being the velocity of a fluid as measured locally by a FIDO.
The first metric in (6) is approximated in Rindler coordinates by

ds2 =−α2dt2 +dx2 +dy2 +dz2, (12)

where

x= rh

(
θ− π

2

)
, y = rhϕ, z = 2rh∆. (13)

The standard lapse function α takes the form z/(2rh) in Rindler coordinates. This
function vanishes at the horizon which we can place at z = 0 and it increases mono-
tonically as z increases from 0 to∞.

Using 3+1 split of spacetime Maxwell’s equations take the following form:

∇·B = 0, (14)

∇·E = 4πρe, (15)
∂B

∂t
= −∇× (αE), (16)

∂E

∂t
= ∇× (αB)−4παj, (17)

where ρe and j are electric charge and current density, respectively. For the perfect
MHD (i.e.MHD with perfectly conducting) assumption there exists no electric field
in the fluid’s rest frame, i.e.E+V×B = 0.

Under this condition the equation for the evolution of magnetic field (16) be-
comes

∂B

∂t
=∇× (αV×B) = (B ·∇)(αV)−B∇· (αV)− (αV ·∇)B. (18)

The conservation of mass, energy and momentum equations are written, respectively,
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as follows:

∂(ρoµ)

∂t
+{(αV) ·∇}(ρoµ) +ρoµγ

2V · ∂V
∂t

+ (19)

+ρoµγ
2V · (αV ·∇)V+ρoµ{∇· (αV)}= 0,

{(
ρoµγ

2 +
B2

4π

)
δij +ρoµγ

4ViVj−
1

4π
BiBj

}
DV j

Dτ
+ρoµγ

2Vi
Dµ

Dτ
−

−
(
B2

4π
δij−

1

4π
BiBj

)
V j

,kV
k =−ρoµγ2ai−p,i+

+
1

4π
(V×B)i∇· (V×B)− 1

8πα2
(αB)2,i+

1

4πα
(αBi),jB

j−

− 1

4πα
[B×{v× (∇× (αv×B))}]i, (20)

γ2
D(µρ0)

Dτ
− 1

α

∂p

∂t
+ 2ρ0µγ

4V · DV

Dτ
+ 2ρ0µγ

2(V ·a) +ρ0µγ
2(∇·V) +

+
1

4πα

[
(V×B) · (∇× (αB)) + (V×B) · ∂

∂t
(V×B)

]
= 0. (21)

Here a subscript i on a vector quantity refers to the i component of that vector.
Equation (21) is derived by using

ε= {µρ0−p(1−V2)}γ2, S = µρ0γ
2V,

←→
W= µρ0γ

2V⊗V+p
↔
γ (22)

in equation ( 23)

dε

dτ
+θε+

1

2α
W ij(£tγij) =− 1

α2
∇· (α2S) +

1

α
(∇β) :

←→
W +E · j. (23)

Here ε, S,
←→
W ,

↔
γ , θ, β, ⊗ and £t represent the mass energy density, energy flux,

stress tensor, the three metric in absolute space, the expansion rate of the FIDO’s
four-velocity, the shift vector, the tensor product and the time derivative along shift-
ing congruence (Lie derivative with respect to global time in a standard style). d

dτ ≡
1
α
∂
∂t is the rate of change of a three-dimensional vector which lies in the absolute

space according to the FIDO. The µ≡ (ρ+p)/ρo is the specific enthalpy of the fluid,
where ρ is the total density of mass-energy and p is the pressure as seen in the fluid’s
rest frame. The ρo is the fluid’s rest-mass density and γ ≡ (1−V2)−1/2 is the fluid’s
Lorentz factor as seen by the FIDO’s. Equations (18)-(21) are the perfect GRMHD
equations for the SAdS black hole.

We consider for ease the “isothermal plasma”(consider the existence of pres-
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sure), for which the equation of state can be expressed as

µ=
ρ+p

ρ0
= constant. (24)

Using (24) in (18)-(21) we get the perfect GRMHD for isothermal plasma close to
the event horizon of SAdS black hole. We characterize the perturbed flow in the
magnetosphere by its velocity V and magnetic field B as measured by the FIDO’s,
pressure of the fluid p and the fluid’s density ρ. The first order perturbations in these
quantities are denoted by δV, δB, δp and δρ. Accordingly, the perturbed variables
take the following form:

B = Bo+ δB = Bo+Bb,V = Vo+ δV = Vo+v,

ρ= ρo+ δρ= ρo+ρρ̃, p= po+ δp= po+pp̃ (25)

where Bo, Vo, po and ρo are unperturbed quantities. The waves can propagate in z-
direction due to gravitation with respect to time t and thus perturbed quantities must
depend on z and t.

We use the linear perturbation and Fourier analyze techniques to reduce GRMHD
equations to ordinary differential equations. The magnetosphere has the perturbed
flow along x-z plane in this surroundings. The FIDO-measured fluid four-velocity
can be described in this plane by V = V (z)ex + u(z)ez , while the Lorentz factor
is γ = 1√

1−u2−V 2
. The rotating magnetic field can be expressed in the x-z plane as

B=B[λ(z)ex+ez]. The relation between the variables λ , u and V is V = VF
α +λu,

where VF is an integration constant.
Using linear perturbation (25), we get a set of equations and then write the

component form of these, and finally derive the following Fourier analyzed equations
using

−c3{(αλ)′+ ikαλ}+ c4(α
′+ ikα)− c6{(αu)′− iω+ ikαu}= 0, (26)

c5(−
iω

α
+ iku) = 0, (27)

ikc5 = 0, (28)

c1{ρ(−iω+ ikuα)−α′up−αu′p−αup′−αupγ2(uu′+V V ′)}+

+c2{ρ(−iω+ ikuα) +α′up+αu′p+αup′+αupγ2(uu′+V V ′)}+

+c3(ρ+p)[−iωγ2u+ ikα(1 +γ2u2)−

−α{(1−2γ2u2)(1 +γ2u2)
u′

u
−2γ4u2V V ′}]

+c4(ρ+p)γ2[(−iω+ ikαu)V +αu{(1 + 2γ2V 2)V ′+ 2γ2uV u′}] = 0, (29)
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c1ργ
2u{(1 +γ2V 2)V ′+γ2uV u′}+ c2pγ

2u{(1 +γ2V 2)V ′+γ2uV u′}+

+c3[−{(ρ+p)γ4uV − λB
2

4π
} iω
α

+

+iku{(ρ+p)γ4uV +
λB2

4π
}+ (ρ+p)γ2{{(1 + 2γ2u2)(1 + 2γ2V 2)−

−γ2V 2}V ′+ 2γ2(1 + 2γ2u2)uV u′}+
B2u

4πα
(αλ)′] +

+c4[−{(ρ+p)γ2(1 +γ2V 2) +
B2

4π
} iω
α

+ iku{(ρ+p)γ2(1 +γ2V 2)−

−B
2

4π
}+ (ρ+p)γ4u{(1 + 4γ2V 2)uu′+ 4(1 +γ2V 2)V V ′}−

−B
2uα′

4πα
]− c6

B2

4π
{ik(1−u2) + (1−u2)α

′

α
−uu′}= 0, (30)

c1γ
2ρ[az +u{(1 +γ2u2)u′+γ2V uV ′}] +

+c2[γ
2p{az +u{(1 +γ2u2)u′+γ2uV V ′}}+ ikp+p′] +

+c3[−
iω

α
{(ρ+p)γ2× (1 +γ2u2) +

λ2B2

4π
}+

+iku{(ρ+p)γ2(1 +γ2V 2)− λ
2B2

4π
}+

+{(ρ+p)γ2{u′(1 +γ2u2)(1 + 4γ2u2) +

+2uγ2×{(1 + 2γ2u2)V V ′+az}}− (αλ)′
λB2u

4πα
}] +

+c4[−
iω

α
{(ρ+p)γ4uV − λB

2

4π
}+

+iku{(ρ+p)γ4uV +
λB2

4π
}+{γ4(ρ+p)×{u2V ′(1 + 4γ2V 2) +

+2V {az +uu′(1 + 2γ2u2)}}+
λB2α′u

4πα
}] + c6

B2

4π
{ikλ(1−u2) +

+λ(1−u2)α
′

α
−λuu′+ (αλ)′

α
}= 0, (31)
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c1γ
2[ρ(− iω

α
+ iku) + 2ρu{az +γ2(uu′+V V ′)}+

+ρu′+ρ′u] + c2[p{
−iω
α

(γ2−1) + ikγ2u}+ 2ργ2u{az +γ2(uu′+V V ′)}

+pγ2u′+p′γ2u] + c3[(ρ+p){−2γ4u
iω

α
+

+ikγ2(1 + 2γ2u2)−γ2u
′

u
+ 6γ6u2(uu′+V V ′) +γ4(uu′+V V ′) + 2γ4uu′

+γ2az(1 + 2γ2u2)}+
B2

4πα
{λ(αλ)′−u(αλ)′(uλ−V )−

−iλ(uλ−V )(ω+kuα)}] + c4[2γ
4(ρ+p){V (− iω

α
+ iku) +

+{3γ2uV (uu′+V V ′) +uV ′+uV az}}+

+
B2

4πα
{−(αλ)′+α′u(uλ−V ) + i(ω+kuα)(uλ−V )}]

+
B2

4πα
c6[u(αλ)′+{α′−u(αu)′+ ik(1−u2)}(uλ−V )] = 0. (32)

From (27) or (28) we obtain c5 is zero which gives bz = 0. Equating the deter-
minant of the coefficients of c1, c2, c3, c4 and c6 of (26), (29)-(32) to zero, we get a
complex dispersion relation of the form

A1(z,ω)k4 +B1(z,ω)k3 +C1(z,ω)k2 +D1(z,ω)k+E1(z,ω) +

+i{A2(z,ω)k5 +B2(z,ω)k4 +C2(z,ω)k3 +

+D2(z,ω)k2 +E2(z,ω)k+F2(z,ω)}= 0. (33)

The different types of modes of waves are investigated here for B > 0 and
the wave number is in arbitrary direction to B. We use the lapse function α = z

2rh

where rh ≈ 2M(1− 4M2

`2
+ · · ·) ' η× 2.948× 105cm, η < 1 for a black hole mass

M ∼ 1M�. We assume ρ = 1 and B2 = 8π. From the mass conservation law in
three-dimensions we get u= 1√

2+z2
. For simplicity, we also assume that u= V . We

get λ = 1−
√
2+z2

z by taking VF = 1, which shows that the magnetic field diverges
close to the horizon.

Using these values in (33) we get values for k, from which we evaluate the
phase velocity vp ≡ ω

k and group velocity vg ≡ (n+ω dndω )−1, where n(= 1/vp) is the
refractive index computed as the ratio of the speed of light in a vacuum to the speed
of light through the material, and dn

dω determines whether the dispersion is normal or
not.

We get four real values of k from the real part of (33). Out of these two are real
and interesting. The other two values are not interesting in the judgment that these
turn out to be imaginary in the whole region. The imaginary part gives five values
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of k, out of which one is real but not interesting and others are complex conjugate.
Here we elucidate only one dispersion relation obtained from the real part, is shown
in the Figure 1.

Fig. 1 – The region shows not normal dispersion, vg > vp except some points, dn
dω > 0,

but n < 1 (not shown in here).

We see in the Figure 1 that the wave number is huge large close to the event
horizon and the waves lose energy as we go away from the event horizon of SAdS
black hole. This shows that the increase in ω increases k and the waves are in growing
mode as z decreases. The wave number takes negative values for some region. The
group velocity is greater than the phase velocity except some points. Since n < 1
though dn

dω > 0, the region is not of normal dispersion.

3. DISCUSSION AND CONCLUDING REMARKS

In summary, we get that the wave number turns out to be infinite at the event
horizon and consequently, no wave is present there due to immense gravitational
field. This indicates that no signal can pass the event horizon or near to it. But when
we depart from horizon, the waves lose energy. Therefore the waves are in damping
mode as we go away from the horizon and in growing mode as we approach the
horizon. It is known that the MHD waves in isothermal plasma are non-dispersive.
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However, the dispersion is noted in the above figures. This factor comes due to the
formalism used and the equations which provides different equations from the usual
MHD equations.
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