
TWO-BODY PROBLEM ASSOCIATED TO BUCKINGHAM
POTENTIAL. COLLISION AND ESCAPE DYNAMICS

EMIL POPESCU2,1

1Astronomical Institute of Romanian Academy
Str. Cutitul de Argint 5, 40557 Bucharest, Romania

2Technical University of Civil Engineering,
Bd. Lacul Tei 124, 020396 Bucharest, Romania

Email: epopescu@utcb.ro

Abstract. We consider a first insight into the two-body problem associated to the
potential proposed by Richard Buckingham in 1938. We describe two limit situations of
motion, collision and escape, and provide the symmetries that characterize the problem.
First, we use the McGehee transformations to remove the collision singularity and the
escape singularity, and to replace them by manifolds pasted on the phase space. We
study the flows on these manifolds and we provide information on the behavior of
nearby orbits. Finally, we present the symmetries that characterize the vector field in
cartesian and polar coordinates. These symmetries form isomorphic Abelian groups
endowed with an idempotent structure.
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1. INTRODUCTION

The Buckingham potential is a function proposed by Richard Buckingham in a
theoretical study of the equation of state for gaseous helium, neon and argon (Buck-
ingham, 1938). It describes the Pauli repulsion energy and van der Waals energy
for the interaction of two atoms that are not directly bonded, as a function of the
interatomic distance r,

U (r) =Aexp(−Br)−M
r6
, (1)

where A, B and M are constants. The Buckingham potential is a simplification of
the Lennard-Jones potential (for Lennard-Jones potential and its astronomical conno-
tations see Mioc et al., 2008a, Mioc et al., 2008b). In this paper, we approach some
aspects of the two-body problem associated to a Buckingham potential of the form
(1). This type of potential covers many physical situations, similar to the Lennard-
Jones potential, but here we are interested only in some mathematical aspects of the
dynamics in this framework.

In Section 2 we present the basic equations of the problem, reduced to a central-
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force problem. We write the equations of motion and the Hamiltonian with the Buck-
ingham potential. Then we have the first integrals that characterize the problem: the
energy integral and the angular momentum integral. In Section 3, the McGehee
transformations are used to remove the collision singularity and to obtain regular-
ized equations of motion. In Section 4, the collision singularity is replaced by the
collision manifold, which is homeomorphic to a 2D torus. We describe the flow on
this manifold and emphasize some properties of this limit situation. In the escape
dynamics, exactly as in the previous limit case, we define the infinity manifold (that
replaces the singularity given by infinite distance) and describe the flow on it. In
Section 5 we show that the corresponding vector fields (in cartesian and polar coor-
dinates) exhibit symmetries that form eight-element Abelian groups endowed with
an idempotent structure.

2. BASIC EQUATIONS OF MOTION

Because the Buckingham potential is central, the associated two-body problem
can be reduced to a central-force problem. The motion is confined to a plane, where
we fix one particle as centre at the origin of this plane R2 and study the relative
motion of the other particle. We denote the position (or configuration) vector of
this particle by q=(q1, q2) ∈R2 and the momentum vector by p=

.
q, p= (p1,p2) .

Then, the Buckingham potential is

U (q) =Aexp(−B |q|)− M

|q|6
, (2)

where A, B and M are constants and the kinetic energy of the unit-mass particle is

T (p) =
|p|2

2
. (3)

The motion is described by the equations

.
q=

∂H

∂p
,

.
p=−∂H

∂q
(4)

for the Hamiltonian

H (q,p) = T (p)−U (q) =
|p|2

2
−Aexp(−B |q|)+ M

|q|6
. (5)
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It follows that
.
q1 = p1
.
q2 = p2

.
p1 =−AB

q1√
q21 + q

2
2

exp
(
−B

√
q21 + q

2
2

)
+6M

q1(
q21 + q

2
2

)4
.
p2 =−AB

q2√
q21 + q

2
2

exp
(
−B

√
q21 + q

2
2

)
+6M

q2(
q21 + q

2
2

)4 .
(6)

These are the basic equations for our research. The phase space is Q×P,
where Q=R2r {(0,0)} is the configuration space and P=R2 is the momentum
space. For given initial conditions (q1, q2,p1,p2)(0) ∈ Q×P, the existence and
uniqueness of a real analytic solution (q1, q2,p1,p2) of the system (6) are ensured
by classical results of the theory of differential equations. This solution is defined
locally on some interval (t−, t+) , where t− < 0 < t+ and can be analytically ex-
tended to a maximal interval−∞≤ t̃− < t− < t+ < t̃+ ≤+∞. Due to the symmetry
(time-reversibility of motion equations), we may study, without loss of generality,
the properties of the solution only on (t̃−,0] namely in the past, or only on [0, t̃+),
namely in the future (see Mioc and Stavinschi, 2002; Mioc and Barbosu, 2003).
Therefore we may confine our study to the interval [0, t̃+). We denote t∗ = t̃+. If
t∗ <∞, one says that the solution encounters a singularity. In our case the equations
of motion have an isolated singularity at the origin, which corresponds to a collision.

Using a standard technique, we find that the Hamiltonian function (5) is a first
integral of the system (6), called the integral of energy:

H (q,p) =
h

2
= const. (7)

where h is the energy constant.
The field U (q) being central, the angular momentum is conserved, hence we

obtain another first integral

L(q,p) = q1p2− q2p1 = C = const. (8)

where C stands for the constant of angular momentum.

3. McGEHEE - TYPE TRANSFORMATIONS

We observe that the potential (2), the motion equations (6) and the energy in-
tegral (7) have an isolated singularity for t = t∗, at the origin q=(0,0) . This sin-
gularity corresponds to a collision particle-centre (see Mioc and Stavinschi, 2000).
In what follows we will apply a sequence of McGehee-type transformations of the
second kind (McGehee, 1974) to remove and to regularize the equations (6). Thus,
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we obtain the equations of motion and the first integrals into a simple form, which
allows a qualitative analysis.

The first step is the introduction of standard polar coordinates (r,θ) and polar
components of the velocity (ξ,η) using the real analytic diffeomorphism

Q×P×[0, t∗)→ (0,∞)× [0,2π]×R×R×[0, t∗)

((q1, q2) ,(p1,p2) , t) 7→ (r,θ,ξ,η, t)

r = |q|

θ = arctan

(
q2
q1

)
ξ =

.
r =

q1p1+ q2p2
|q|

η = r
.
θ =

q1p2− q2p1
|q|

.

(9)

We obtain
.
r = ξ
.
θ =

η

r
.
ξ =

η2

r
−AB exp(−Br)+6M

1

r7
.
η =−ξη

r
,

(10)

while the first integrals (7) and (8) become respectively

ξ2+η2−2Aexp(−Br)+2M
1

r6
= h

rη = C.
(11)

The second step is to scale down the velocity components via the real analytic
diffeomorphism:

(0,∞)× [0,2π]×R×R×[0, t∗)→ (0,∞)× [0,2π]×R×R×[0, t∗)

(r,θ,ξ,η, t) 7→ (r,θ,x,y, t)

x= r3ξ
y = r3η.

The equations of motion (10) become
.
r =

x

r3.
θ =

y

r4
.
x=

3x2+y2

r4
−ABr3 exp(−Br)+6M

1

r4
.
y =

2xy

r4
.

(12)
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The first integrals (11) now read respectively

x2+y2 = hr6+2Ar6 exp(−Br)−2M (13)

y = Cr2. (14)
We observe that the singularity at r = 0 still persists in (12). To remove it, we

rescale the time through the real analytic diffeomorphism

(0,∞)× [0,2π]×R×R×[0, t∗)→ (0,∞)× [0,2π]×R×R×[0,∞)

(r,θ,x,y, t) 7→ (r,θ,x,y,s) ,

defined by
ds= r−4dt.

Keeping by abuse the same notation for the new functions of the timelike variable s
and ′ = d/ds, the equations of motion (12) become:

r′ = rx
θ′ = y
x′ = 3x2+y2−ABr7 exp(−Br)+6M
y′ = 2xy.

(15)

The first integrals (13) and (14) keep the same expressions.

4. COLLISION AND ESCAPE

In this section, we want to study the flow in McGehee-type coordinates. We
observe that both the equations of motion (15) and the first integrals (13) and (14)
are well defined for the boundary r = 0 . Thus the phase space of the McGehee-type
coordinates can be analytically extended to contain the manifold

Ecol = {(r,θ,x,y) |r = 0} ,

which is invariant to the flow because r′ = 0 for r = 0. The integrals (13) and (14)
also extend smoothly to this boundary. Now, let us consider h to be a parameter, and
define the constant-energy manifold

Eh =
{
(r,θ,x,y) |x2+y2 = hr6+2Ar6 exp(−Br)−2M

}
,

which corresponds to a fixed level of energy. Then the collision manifold is

E0 = Ecol∩Eh =
{
(r,θ,x,y) |r = 0, θ ∈ S1, x2+y2 =−2M

}
, (16)

where S1 is the segment [0,2π] with the end points θ = 0 and θ = 2π identified. We
will understand the flow on this invariant manifold E0 as the behavior of the flow
near collision. The continuity of solutions with respect to initial data allows us to
study the near-collisional orbits.
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For M > 0, E0 is the empty set. In this situation, the particle can approach the
centre no matter how close, but cannot collide with it.

For M = 0, E0 reduces to a circle.
For M < 0, E0 is homeomorphic to a 2D cylinder in 3D space of the coordi-

nates (θ,x,y) ∈ S1×R2. The cylinder E0 may also be considered homeomorphic to
a 2D torus, both actually imbedded in the 4D full phase space of the McGehee-type
coordinates (r,θ,x,y). In what follows, we shall describe the flow on E0. Using (15)
and (13), the vector field on E0 is

θ′ = y
x′ =−2y2
y′ = 2xy.

(17)

From (17) we observe that the flow on E0 (in the torus representation) admits two
circles of degenerate equilibria: the upper circle

UC =
{
(θ0,x,y) | x=

√
−2M, y = 0

}
and the lower circle

LC =
{
(θ0,x,y) | x=−

√
−2M, y = 0

}
,

with arbitrary θ0 ∈ S1. Thus, the flow on E0 consists of periodic orbits if y 6= 0, and
of circles formed by degenerate equilibria if y = 0, in which case x = ±

√
−2M.

From the second equation of (17) we observe that the flow on E0 is gradientlike
with respect to the x-coordinate and x′ < 0 for y 6= 0, hence the orbits on E0 are
heteroclinic and move from UC to LC. We can deduce the slope of these trajectories
by putting

x=
√
−2M sinα, y =−

√
−2M cosα.

We have
θ′ =−

√
−2M cosα, α′ =−2

√
−2M cosα.

It follows that
dα

dθ
= 2. Fig.1 illustrates the flow on E0.

All orbits on E0 tend asymptotically, in infinite (fictitious) time, to the station-
ary solutions LC. By (14), we observe that collisions occur for C = 0, when we have
rectilinear, radial motion. The collisions correspond to the halfplane (x > 0, y = 0),
whereas ejections correspond to the half-plane (x < 0, y = 0).

On the other hand, since the variable θ does not appear explicitly in the equa-
tions (15) and in the relations (13) and (14), it means that the flow is invariant to rota-
tions, so we can factorize it by S1. Thus, we reduce the dimension of the phase space
from 4 to 3. After this factorization, the collision manifold E0 becomes a circle in
the three-dimensional reduced phase space of the coordinates (r,x,y)∈ [0,∞)×R2,

Ẽ0 =
{
(r,x,y) |r = 0, x2+y2 =−2M

}
. (18)
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Fig. 1 – The flow on E0.

The circles of equilibria on the torus are represented by two points on this
circle. The other points on the collision-manifold circle correspond to the periodic
orbits on the torus. In general, in the unreduced phase space, all orbits are manifolds
consisting of the product between an orbit and S1.

Now, we approach the escape dynamics. We consider B > 0. We shall use
a new sequence of McGehee-type transformations for the equations of motion (15)
and the first integrals (13) and (14). These transformations are real analytic dif-
feomorphisms. The first step is the McGehee-type transformation of the first kind
(McGehee, 1973)

ρ=
1

r
,

which brings the infinity at origin making it turn to the singularity ρ= 0. To remove
this singularity, we resort to

u= ρ3x
y = ρ3y,

which rescale the velocity components, and

dτ = ρ−4ds,

which rescales the time. We obtain the following equations of motion:

dρ

dτ
=−uρ2

dθ

dτ
= ρv

du

dτ
= ρv2−AB exp(−B/ρ)+6Cρ7

dv

dτ
=−ρuv.

(19)
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The first integrals (13) and (14) become

u2+v2 =−2Cρ6+2Aexp(−B/ρ)+h (20)

and
v = Cρ. (21)

We remark that the equations of motion and first integrals make sense when ρ→ 0.
So, the phase space of the McGehee-type coordinates can be analytically extended to
include the manifold

Eesc = {(ρ,θ,u,v) |ρ= 0} ,

which is invariant to the flow, because
dρ

dτ
= 0 for ρ= 0. The integrals (20) and (21)

also extend to this manifold. Let us define:

Ẽh =
{
(ρ,θ,u,v) |ρ 6= 0, u2+v2 =−2Cρ6+2Aexp(−B/ρ)+h

}
∪

∪
{
(ρ,θ,u,v) |ρ= 0, u2+v2 = h

}
,

which corresponds to a fixed level of energy. The intersection E∞ = Eesc∩ Ẽh is

E∞ =
{
(ρ,θ,u,v) |ρ= 0, θ ∈ S1, u2+v2 = h

}
,

will be called the infinity manifold. For h < 0 , E∞ is the empty set (in other words,
for negative energy levels, the particle cannot escape). For h = 0, E∞ reduces to a
circle

E∞ =
{
(ρ,θ,u,v) |ρ= 0, θ ∈ S1, u= 0, v = 0

}
.

For h > 0 , E∞ is homeomorphic to a 2D cylinder in the 3D space of the coordi-
nates (θ,u,v) ∈ S1×R2. This cylinder may also be considered homeomorphic to
a 2D torus (see Section 4), both actually imbedded in the 4D full phase space of
the coordinates (ρ,θ,u,v). There are two circles of degenerate equilibria: the upper
circle

UC =
{
(θ0,u,v) | u=

√
h, v = 0

}
and the lower circle

LC =
{
(θ0,u,v) | u=−

√
h, v = 0

}
,

with arbitrary θ0 ∈ S1. We can deduce the slope of these trajectories by putting

u=
√
hsinα, v =−

√
hcosα.

We have
θ′ =−

√
hcosα, α′ = 0.

It follows that
dα

dθ
= 0. Fig. 2 illustrates the flow on E∞.
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Fig. 2 – The flow on E∞.

5. SYMMETRIES

In this section we approach the symmetries characteristic to our model based
on the Buckingham potential. We show that the corresponding vector fields present
symmetries that form isomorphic Abelian groups endowed with an idempotent struc-
ture. This approach was used for various fields in Mioc et al. (2008b), Mioc (2002a),
Mioc (2002b), Mioc and Barbosu (2003), and is also valid for the Buckingham po-
tential. Here we will follow the cited papers.

Explicitly, the vector field (4) corresponding to cartesian coordinates is given
by (6).

These equations exhibit eight symmetries Si=Si (q1, q2,p1,p2, t), i=0,1, ...,7,
as follows:

S0 = (q1, q2,p1,p2, t) = I
S1 = (q1, q2,−p1,−p2,−t)
S2 = (q1,−q2,p1,−p2, t)
S3 = (−q1, q2,−p1,p2, t)
S4 = (q1,−q2,−p1,p2,−t)
S5 = (−q1, q2,p1,−p2,−t)
S6 = (−q1,−q2,−p1,−p2, t)
S7 = (−q1,−q2,p1,p2,−t) ,

that map solution onto solution. Moreover, we observe that S1, S2, S3 are indepen-
dent and they generate the other four symmetries:

S4 = S1 ◦S2
S5 = S1 ◦S3
S6 = S2 ◦S3
S7 = S1 ◦S2 ◦S3.
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A similar structure is obtained for any three symmetries considered as independent
of each other.

The set G = {Si|i = 0,7} (where S0 = I is the identity), endowed with the
composition law ”◦”, forms a symmetric Abelian group. To prove this, it is easy to
construct the composition table, observing that every element ofG is its own inverse.
(G,◦) is an Abelian group of order eight with three generators of order two. Thus, G
is isomorphic to Z2×Z2×Z2.

The results obtained for cartesian coordinates can be transposed to standard
polar coordinates. The corresponding vector field (10) has eight symmetries Spol

i =

Spol
i (r,θ,ξ,η, t), i ∈ {0,1, ...,7} , as follows:

Spol
0 = (r,θ,ξ,η, t) = Ipol

Spol
1 = (r,θ,−ξ,−η,−t)
Spol
2 = (r,−θ,ξ,−η,t)
Spol
3 = (r,π−θ,ξ,−η,t)
Spol
4 = (r,−θ,−ξ,η,−t)
Spol
5 = (r,π−θ,−ξ,η,−t)
Spol
6 = (r,π+θ,ξ,η, t)

Spol
7 = (r,π+θ,−ξ,−η,−t) .

The set Gpol = {Spol
i |i= 0,7} (where Spol

0 = Ipol is the identity), endowed with the
composition law ”◦”, forms a symmetric Abelian group, noting that every element of
G is its own inverse. Gpol is isomorphic to Z2×Z2×Z2.

The groups G and Gpol are diffeomorphic to each other, considering the real
analytic diffeomorphism(

R2r{(0,0)}
)
×R3→ (0,∞)×S1×R3,

(q1, q2,p1,p2, t) 7→ (r,θ,ξ,η, t) .

The symmetries revealed above show the existence of many other solutions, for each
solution proved to exist. In terms of the physical motion, the transformations corre-
sponding to each variable have the following meaning (for more details see Mioc and
Barbosu, 2003; Mioc et al., 2008b):

– (t→−t) corresponds to motion in the future/past;
– (ξ→−ξ) means motion performed outwards/inwards;
– (η→−η) means clockwise/counterclockwise motion;
– (θ → −θ), (θ→ π−θ), (θ→ π+θ) correspond to positions shifted each

other by 2θ, π−2θ and π, respectively.
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6. CONCLUSIONS

The two-body problem associated to the Buckingham potential has similarities
with problems associated to different potentials. The collision manifold does not
depend on the energy constant h (so every energy level shares this manifold), but
it depends on the field parameter M , such that collisions are possible only for non-
positive values of M . The infinity manifold essentially depends on h and escape is
possible only for nonnegative energy levels. Collisions occur only for zero angular
momentum (radial motion), whereas escape is also possible for nonzero angular mo-
mentum (spiral motion). Both collision and infinity manifolds constitute manifolds
of equilibria for the global flow in full phase space (each one on its own time scale).
The equations of motion, expressed in cartesian or polar coordinates present symme-
tries that form eight-element Abelian groups endowed with an idempotent structure,
which are isomorphic.

This paper represents the first part of a study concerning the dynamics which
corresponds to the Buckingham potential.
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