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Abstract. The Caledonian four-body problem was introduced by Steves and Roy
(1998). The Caledonian problem is shown to be suitable for application to the study
of real four-body stellar systems. The coplanar CSFBP involves two pairs of equals
or distinct masses moving in coplanar, initially circular orbits, starting in a collinear
arrangement. In this paper we make a review of the Caledonian four-body problem,
in particular the case of two pairs of equal masses and the evolution of equilibrium
points.
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1. INTRODUCTION

The motion of systems of n-bodies under their mutual gravitational attraction
has always fascinated mathematicians and astronomers. Today the few-body problem
is recognized as a standard tool in astronomy and astrophysics, from solar system
dynamics to galactic dynamics Murray et al. (1999). Approximately two thirds of
the stars in our Galaxy exist as part of multistellar systems. Stellar situations in
the solar system can be seen as living in the province of few body problems, where
computations of the orbits of these systems must be done in a precise way. In the
same direction as several restricted three body problems have given much insight
about real three body problems, the study of special type of four-body problem can
be of help to understand the dynamical behavior of quadruple stellar systems through
analytical or numerical studies. In the case of four-body problems, even the case of
a restricted one can impose greater difficulties from an analytical point of view.

The number of quadruple stellar systems in the Galaxy is estimated to be of
the order of thousands of millions. It is worth to note that the four-body problem
is increasingly being used for explaining many complex dynamical phenomena that
appear in the solar system and exoplanetary systems.

A very restricted four-body problem has been used to study a Sun-Earth-Moon-
Satellite system to find possible regions of motion, also four-body problems involv-
ing three bodies of small mass revolving around a more massive body in the same
plane have been used to explore the stabilizing role of Saturn in the evolution of the
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Sun-Jupiter-Saturn-asteroid system (Széll et al., 2004).
The goal of this paper is to give a review of a family of coplanar four-body

models for both linear and double-binary hierarchical systems known as coplanar
Caledonian four-body problem (CFBP, for short), developed by Steves and Roy in
Roy and Steves (1998), where four masses move in coplanar orbits about the cen-
ter of mass of the system, initially in circular orbits. At t = 0 the bodies form a
collinear configuration and move co-rotationally with velocity vectors perpendicular
to that line and are by definition coplanar, see Figure 1. One interesting dynamical
feature of this problem is that several known and already studied four-body problems
like the rhomboidal, trapezoidal, equilateral, and collinear problems can be seen as
subsystems.
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Fig. 1 – The CSFBP configuration for t= 0 and t > 0.

The CFBP enables considerable simplification to be made particularly in the
form of the so called Caledonian Symmetric Double Binary Problem (CSDBP, for
short). In the CSFBP two pairs of bodies of equal masses move in a fixed plane,
occupying positions of central symmetry with respect to the origin. This system
has four degrees of freedom like the planar three-body problem, see Steves and Roy
(2001). There are two types of symmetrical restrictions: a past-future symmetry so
that the dynamical evolution of the system after time t = 0 is a mirror image of that
before t = 0; and a dynamical symmetry for which the dynamical evolution of two
bodies on one side of the system’s center of mass is a rotational image of that for the
two bodies on the other side of the center of mass.

The CSFBP as proposed by Steves and Roy is relevant in studying the stability
and evolution of symmetric quadruple stellar clusters and exoplanetary systems of
two planets orbiting a binary pair of stars, see for example Steves and Roy (2001)
and Széll et al. (2004). Besides, by using the CSFBP Steves and Roy exploited both
past-future and dynamical symmetries and reduced the number of variables of the
system to study the dynamical behavior of one of the binary pairs, the other binary
pair’s motion being a mirror image of the first binary pair’s motion.

In the solar system, orbital motion in quadruple stellar systems is invariable
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found to consist of perturbed two-body motions. All four-body stellar systems are
found to exist in two different hierarchies, the double binary and the linear. Accord-
ing to Roy and Steves (1999), a dynamical system of n bodies is said to be hierar-
chical if at a given epoch it can be defined to exist as a clearly identified number
of disturbed two-body motions, where the two bodies in a pair may be made up of
masses, a mass and a center of mass, or two centres of mass.

The hierarchy is said to be changed if any of the designated disturbed two-body
systems is disrupted. There are four different types of hierarchy states present in the
CSFBP two double binaries (m1-m2 and m3-m4) and two single binaries (m1-m3

and m2-m4). Also four different hierarchical arrangements of the four bodies which
are shown in Figure 2, and these arrangements are listed next.

According to Steves and Roy (1999), the CSFBP can be found in only one of
four different hierarchy states:

• The bodies m1-m2 and m3-m4 form binaries which orbit around the barycenter
of the four-body system, Figure 2 (a).

• The bodies m1-m3 and m2-m4 form binaries which orbit around the barycenter
of the four-body system, Figure 2 (b).

• The bodiesm2-m3 form a central binary and the andm1-m4 bodies orbit around
it, Figure 2 (c).

• The bodiesm1-m4 form a central binary and the andm2-m3 bodies orbit around
it, Figure 2 (d).
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Fig. 2 – The four possible hierarchical arrangements in the CSFBP.
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2. THE EQUATIONS OF MOTION

The equations of motion of the n-body problem of mass mi are given by

mir̈i =
∑
i 6=j

mimj

r3ij
rij , i= 1,2,3, . . . (1)

where ri = (xi,yi) correspond to the positions of the bodies, rij = rj − ri are the
relative positions with respect each other, rij are the distances between the particles
with positions ri and rj and units are chosen so that the gravitational constant is
G= 1. For the full four-body problem the equations of motions become
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r312
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m3

r313
r13+

m4

r14
r14,
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m1
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m1

r31
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m2

r332
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m4

r34
r34,
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m1

r41
r41+

m2

r42
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m4

r43
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3. CALEDONIAN PROBLEM WHERE THE MASSES ARE TAKEN PAIRWISE EQUAL

In the symmetrical case we are confined to the model where there are two pairs
of bodies with the members of each pair symmetrically linked in mass and dynamics.
For this symmetrical problem we also consider the particular case when the masses
of the four bodies are equal. In this section we will follow closely Roy and Steves
(1998). The highly symmetric cases of the Caledonian problem of four equal masses
correspond to arrangements in squares (A), equilateral triangles (B) and collinear
(C) configurations.

• Square (A)

r4 =−r2, r3 =−r1, r34 =−r12, r41 =−r23

are the relations among the positions of the bodies.

• Equilateral triangle (B)
In this case we have r4 = 0 and the relations among the distances of the bodies
are given a follows r12 = r23 = r31 = a and r1 = r2 = r3 = a/

√
3.

• Collinear configuration (C)
In order to keep the symmetry when evolving the bodies, their positions are
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given by the equations

r4 =−r1, r3 =−r2.

Let the mass ratio µ =m/M ≤ 1. We now let two of the bodies in cases A,
B and C where one pair of bodies each has a mass equal m= µM , where M is the
mass of each of the other pair of bodies.

The possible cases for 0< µ < 1 are shown diagrammatically in Figure 3. We
note that only in cases (h) and (g) does no symmetry exist for µ 6= 1. In the other
cases, use can be made of the symmetry existing to reduce the number of variables.
In all cases value of the mass ratio µ, the initial geometry remains unaltered in shape
or size but the system rotates with constant angular velocity about the centre of mass.
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Fig. 3 – (a) Trapezoidal configuration: m1 =m4 =M , m2 =m3 =m. (b) Rhomboidal
configuration: m1 =m3 =M , m2 =m4 =m. (c) Equilateral triangle: m1 =m3 =M ,

m2 =m4 =m. (d) Equilateral triangle: m1 =m3 =m, m2 =m4 =M . Collinear configurations:
(e)m1 =m4 =m, m2 =m3 =M ; (f)m1 =m4 =M , m2 =m3 =m; (g)m1 =m3 =m,

m2 =m4 =M ; (h)m1 =m2 =M , m3 =m4 =m.
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Let us remark that there are two limit problems, namely µ=1 case of four equal
masses, and µ= 0 correspond to Lagrange solution of the Copenhagen problem.

3.1. SUBPROBLEMS

There are several subproblems of the CSFBP that have been studied by several
authors, as listed below.

• Rhomboidal problem
The rhomboidal four-body problem means a configuration of four particles with
masses m1, m2, m3, m4 respectively, that are located in the plane at the ver-
tices of a rhombus, where m1 = m3 > 0 are in the horizontal direction and
m2 =m4 > 0 in the vertical direction. The particles are given symmetric initial
conditions in positions and velocities with respect to the axes in the plane and
always kept a symmetric rhomboidal configuration under the law of Newton at-
traction. This problem has been studied, among others, by Lacomba and Perez
(1993) and Ji et al. (2000).

• Trapezoidal problem
The trapezoidal four-body problem is a planar problem, where symmetry as-
sumptions are imposed upon the values of the masses m1 =m4 and m2 =m3

and initial conditions so that the resulting solution defines a symmetrical trape-
zoid for all time. This problem has three degrees of freedom and has been
studied, among others, by Lacomba (1981) and Simó and Lacomba (1982).

• Collinear problem
Collinear symmetric four bodies the motion is restricted to a line where the inner
pair have mass m2 =m3 and the outer pair have mass m1 =m4. This is a two
degrees of freedom problem and has been studied, among others, by Lacomba
and Medina (2004) and Ouyang and Xie (2009).

• Equilateral four-body problem.
To the best of the knowledge of the authors, this problem has not been studied
to this date.

4. EQUILIBRIUM POINTS

The Copenhagen problem is the restricted circular coplanar three-body prob-
lem with two bodies of equal finite mass revolving in a circle about their common
center of mass with a third particle of infinitesimal mass moving in an orbit coplanar
with that of the two finite masses. This problem was one of the main subjects of E.
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Fig. 4 – (a) The Copenhagen problem in the rotating set where masses m1 and m2 are located at
(− 1

2 ,0) and ( 12 ,0), respectively. (b) Lagrange points in Copenhagen problem located at (0,0),
(−1.19841,0), (1.19841,0), (0,0.866) and (0,−0.866).

Strömgren and the Copenhagen school during the beginning of the twentieth century
and they computed a great number of periodic orbits, see Szebehely (1967).

It is known that an equilibrium configuration of four bodies is a geometric con-
figuration of four bodies in which the gravitational forces are balanced in such a way
that the four bodies rotate together about their centre of mass and thus the geomet-
ric configuration is maintained for all time. In this section we present a detailed
summary of the equilibrium configurations given by Roy and Steves (1998).

As we know, the Lagrange solutions of the three-body problem are given by
five Lagrange points of equilibrium, three of which, L1, L2 and L3, remain in line
with the two finite masses. The fourth and fifth Lagrange points of equilibrium, L4

and L5 form equilateral triangles with m1 and m2, see Figure 4.
The dynamical relation of the Copenhagen three-body problem and the Cale-

donian four-body problem is more subtle and elegant that it seems to be, as we see
next. Roy and Steves (1998) showed that by taking two pairs of equal masses in the
planar Caledonian four-body, with two of the bodies having mass equal to m, each
of the remaining two bodies with mass M and considering the relation between the
values m and M given by m = µM , the evolution of the families of equilibrium
solutions for all values of µ, when µ approaches to zero is as follows, these solutions
reduce to the Lagrange solutions L1, L2, L3, L4 and L5 of the Copenhagen problem
when two of the masses are equally reduced, see Figure 5.

Summing-up, Roy and Steves (1998) showed the evolution of the equilibrium
points for 0 < µ < 1, beginning at the four-body equals mass solution of the square
where µ=1 and culminating in theL4 andL5 solutions where µ approaches zero, see
left picture in Figure 5. Besides, the right picture in Figure 5 shows the equivalent
families of solutions as µ ranges from one to zero for the other cases. The large
bodies in the pictures indicate the locations of the two large masses which are equal
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to M and the locations of the other two bodies when their masses are also equal to
M (that is, µ = 1). The smaller bodies indicate the locations of the other pair of
bodies as µ reduces to zero. Where even smaller bodies are depicted, these show the
locations of reduced masses when µ varies from 0.1 to 0.

4.1. NON COLLINEAR EQUILIBRIUM POINTS

In this section we shall discuss on the non collinear equilibrium configurations
for the four-body problem consisting of two pairs of equal masses bodies when the
parameter of mass µ varies from 1 to 0. There are four cases, two of them beginning
at square configurations but presenting two different kinds of evolution and the two
other cases having triangular configurations as initial configurations with two differ-
ent evolution stories. In the first of the next items we present the first two cases,
those where the initial configurations are squares while the case of triangular initial
configurations are considered in the second ı́tem.

i) Let us start by watching at the left picture of Figure 5 where the solution begins
as a square for µ= 1, where all the masses are equal; then, while µ approaches
zero, the configuration changes to a trapezoid and finally ends as the Lagrange
equilibrium triangular solution when µ = 0, reaching Lagrange point L4. For
the right picture in the same Figure 5, we start at µ=1with a square solution and
the evolution of the configuration when µ goes to zero gives a continuous family
of solutions that reaches the equilateral triangular solution of the Copenhagen
problem. The evolution and final Lagrange solution points for the two small
bodies as their masses are reduced to zero has still to be explored. The two
small masses could migrate to the L4 or L1, points or both.

ii) Now, we consider the triangular equilibrium configuration of four bodies with
two pairs of equal masses, where two large massesM lie at the two vertices of a
triangle and two smaller masses m lie at on the line of symmetry of the triangle.
In Shoaib (2007) showed numerically, that there are two families of equilibrium
configurations for each value of µ varying from 1 to zero, and these are shown
in Figure 6. In this figure the origin the point halfway between the two primaries
of masses M . Thus unlike in Figure 5, the centre of mass is a point that moves
as µ is reduced from 1 to 0. For this first case of triangular equilibrium config-
urations, two special solutions give the boundary of the family of solutions. For
µ = 1 (four equal masses case) there are two well known solutions, the isosce-
les triangle solution and the equilateral triangle solution. So, there are solutions
that start with an isosceles triangle configuration when µ= 1 and solutions that
start with a equilateral triangle configuration for the same value of µ. The other
boundary of the families of solutions correspond to the value µ = 0. For this
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Fig. 5 – Non collinear families of equilibrium solutions. Left picture shows the change in the
equilibrium solution as µ is varied from 1 to 0, beginning at the four-body equal mass solution of
square where µ= 1 and culminating in the L4 and L5 solutions where µ approaches zero. Right

picture shows the evolution of equivalent families of solutions as µ is varied from 1 to 0 for the other
cases. These figures were taken from Roy and Steves (1998).

null value of µ, we obtain the Lagrange solutions of the Copenhagen problem.
When starting with an isosceles triangular four-body configuration, as µ goes
from 1 to 0, the bodies on the line of symmetry of the triangle go to L4, while
the solution starting with an equilateral triangle four-body configuration behaves
as follows, the upper point of the triangular four-body configuration goes to L4

and the point in the interior of the triangle goes to L1. In short, between µ = 1
and µ= 0 there are two families of equilibrium solutions.

4.2. COLLINEAR EQUILIBRIUM POINTS

In this section we consider all possible arrangements of the two pairs of equal
masses along a straight line. The first two of the four arrangements are symmetric
while the last two arrangements are nonsymmetric.

Let us consider four bodies in a collinear configuration having equal mass by
pairs. Observe that a particular case is obtained when all of the particles of the
gravitational system have equal mass. The possible arrangements for the four bodies
when they are taken by pairs of equal mass are depicted in Figure 3 (e)-(h).

Next we review the four kinds of collinear equilibrium configurations both
symmetric and non-symmetric.

i) The symmetrical arrangement of two pairs of different masses, the larger masses
(m2=m3=M ) lie in the middle of the line and the smaller masses (m1=m4=
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Fig. 6 – The evolution of all four masses when µ is varied from 1 to 0 in the triangular equilibrium
case (left picture). Isosceles triangle (b) Solution equilateral triangle. Here the origin is located

halfway between the two primaries and thus the centre of mass moves as µ is varied. These figures
were taken from Shoaib (2007)

m) lie at the corners apiece, also placed symmetrically with respect to the center
of mass of the four-body configuration as shown in the Figure 3 (e).

The Figure 7 shows the locations of the family of the solutions from the collinear
equal mass solution at µ=1 to the solution at µ=0, wherem1 andm4 have mi-
grated to the L3 and L2 points, respectively, as their masses have been reduced
to zero.

Fig. 7 – Collinear families of equilibrium solutions. m1 and m4 approach L3 and L2. This figure was
taken from Roy and Steves (1998).

ii) In the second case, the pair of bodies with smaller mass (m2 =m3 =m) have
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symmetric positions with respect to the centre of mass and remain closer to it
than the bodies with equal and larger masses (m1 =m4 =M ), see Figure 3 (f).

When µ tends to 0 the bodies m2 and m3 approach L1. It is shown in Figure 8.

Fig. 8 – Collinear families of equilibrium solutions. m2 and m3 migrate to the L1 when µ→ 0. This
figure was taken from Roy and Steves (1998).

iii) This case corresponds to a non symmetric configuration of the four-body collinear
configuration. The masses are arranged in the following way: m1 =m, m2 =
M , m3 =m and m4 =M , see Figure 3 (g).

In this case, when the masses of m1 and m3 are reduced to zero they migrate to
the L3 and L1 Lagrange point respectively. The fourth m4 of mass M migrates
to the point 1/2 with m1 remaining at 1/2. It is shown in Figure 9.

Fig. 9 – Collinear families of equilibrium solutions. m3 migrates to L1, while the other small body
m1 migrates to L3 as their masses are reduced to zero. The body m4 migrates to the point 1/2 with

m1 remaining at −1/2. This figure is taken from Roy and Steves (1998).

iv) This is the second non-symmetric arrangement of the four bodies. The masses
are arranged in the following way: m1 =M , m2 =M , m3 =m and m4 =m,
see Figure 3 (h).
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For this configuration, the two smaller bodies m3 =m4 migrate to the L2 La-
grange point when µ tends to 0. It may be noted that m4 actually moves outer
further than L2 before returning to end at that point. m2 migrates to the point
1/2 as µ approaches zero. It is shown in Figure 10.

Note that for µ= 1 we get the collinear equal mass solution.

Fig. 10 – Collinear families of equilibrium solutions. m4 moves out further to L2 before returning to
end at that point. m2 migrates to the point 1/2 as µ approaches zero. This figure was taken from Roy

and Steves (1998).

In 2011, Shoaib and Faye (2011) also discussed about the equilibrium solutions
of four different types of collinear four-body problems having two pairs of equal
masses, they obtained similar results to those by Roy and Steves (1998). Their ap-
proach consisted in using two parameter of masses µ1 =m1/MT and µ2 =m2/MT ,
where MT is the total mass of the system, and m1 and m2 are the two unequal
masses.

5. CONCLUSIONS

In this paper we have made a review of the planar caledonian four-body prob-
lem and special attention was paid to the Caledonian symmetric double binary prob-
lem having bodies with equal masses by pairs. We looked at the existence of a family
of hierarchical subsystems for the caledonian problem and analyzed the behavior of
the equilibrium solutions for the case of two pairs of bodies with equal mass each
for values of the parameter µ =M/m, where M is the mass of the pair of heavier
bodies and m is the mass of pair of lighter bodies. This study permits us to see the
more profound relation between a three body problem, the Copenhagen problem and
a four-body problem, the double binary with equal masses by pairs. As µ approaches
zero, four-body equilibrium solutions of the Caledonian symmetric double binary
problem have as limit the Lagrange equilibrium points L1,L2,L3,L4 and L5 for the
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Copenhagen three body problem. It is interesting to point out that some subsystems
of the plane Caledonian four-body problem, like the rhomboidal and the collinear
symmetric four-body problems among others, have been studied by several authors
and it is worth to consider for further study the relation of these problems seen as
subsystems of the caledonian problem in order to have a deeper understanding of the
four-body problem.
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2011-SEP México.
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