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Abstract. A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues
are ±ωi 6= 0 and 0. For a such equilibrium there is no a general theory for knowing
when from this equilibrium bifurcates a small–amplitude periodic orbit moving the pa-
rameters of the system. We provide here an algorithm for solving this problem. In
particular, first we characterize the values of the parameters for which a zero–Hopf
equilibrium point takes place in the Rössler systems, and we find two one–parameter
families exhibiting such equilibria. After for one of these families we prove the exis-
tence of one periodic orbit bifurcating from the zero–Hopf equilibrium. The algorithm
developed for studying the zero–Hopf bifurcation of the Rössler systems can be applied
to other differential system in Rn.
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1. INTRODUCTION AND STATEMENTS OF THE MAIN RESULT

In Rossler (1979) Rössler, inspired by the geometry of 3-dimensional flows,
introduced several systems as prototypes of the simplest autonomous differential
equations having chaos, the simplicity is in the sense of minimal dimension, min-
imal number of parameters and minimal nonlinearities. In MathSciNet appear at this
moment more than 171 articles about the Rössler’s systems.

Rössler invented a series of systems, the most famous is probably

dx

dt
= ẋ=−y−z,

dy

dt
= ẏ = x+ay,

dz

dt
= ż = bx− cz+xz,

(1)

introduced in Rossler (1979), see also Gaspard (2005). While the Rössler systems
were created for studying the existence of strange attractors in differential systems
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of dimension three, many authors have studied the periodic orbits of these systems
depending on their three parameters a, b and c. A brief summary of the results on the
periodic orbits of the Rössler systems is done in section 2. The integrability of those
systems was studied in Lima and Llibre (2011), see also the references quoted there.

We remark that in many papers the Rössler system is written into the form

ẋ=−y−z,

ẏ = x+ay,

ż = b− cz+xz.

(2)

The differential systems (1) and (2) are equivalent. Indeed, changing the parameter
b of system (2) by the new parameter b= (c2−d2)/a, the two equilibrium points of
system (2) are

p± =

(
c±d

2
,
−c∓d

2a
,
c±d
2a

)
.

Translating to the origin of coordinates the equilibrium p+ system (2) becomes sys-
tem (1), after renaming the coefficients of x and z in the equation ż.

A zero–Hopf equilibrium is an equilibrium point of a 3–dimensional autonomous
differential system, which has a zero eigenvalue and a pair of purely imaginary eigen-
values. Usually the zero–Hopf bifurcation is a two–parameter unfolding (or family)
of a 3-dimensional autonomous differential system with a zero–Hopf equilibrium.
The unfolding has an isolated equilibrium with a zero eigenvalue and a pair of purely
imaginary eigenvalues if the two parameters take zero values, and the unfolding has
different topological type of dynamics in the small neighborhood of this isolated
equilibrium as the two parameters vary in a small neighborhood of the origin. This
zero–Hopf bifurcation has been studied by Guckenheimer, Han, Holmes, Kuznetsov,
Marsden and Scheurle in Guckenheimer (1980); Guckenheimer and Holmes (1990);
Han (1998); Kuznetsov (2004); Scheurle and Marsden (1984), and it has been shown
that some complicated invariant sets of the unfolding could be bifurcated from the
isolated zero–Hopf equilibrium under some conditions. Hence, in some cases zero–
Hopf bifurcation could imply a local birth of “chaos” see for instance the articles of
Baldomá and Seara, Broer and Vegter, Champneys and Kirk, Scheurle and Marsden
(cf. Baldoma and Seara (2006, 2008); Broer and Vegter (1984); Champneys and Kirk
(2004); Scheurle and Marsden (1984)).

As far as we know nobody has studied the existence or non–existence of zero–
Hopf equilibria and zero–Hopf bifurcations in the Rössler systems. This will be
our objective to study the zero–Hopf bifurcations in the Rössler systems. We must
mention that the method used for studying the zero–Hopf bifurcation can be applied
to any differential system in R3.

In the next proposition we characterize when the equilibrium point localized at
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the origin of coordinates of the Rössler systems is a zero–Hopf equilibrium point.
Proposition 1 . There are two one–parameter families of Rössler systems for which
the origin of coordinates is a zero–Hopf equilibrium point. Namely:

(i) a= c ∈ (−
√

2,
√

2) and b= 1; and

(ii) a= c= 0 and b ∈ (−1,∞).

Proposition 1 is proved in section 4.
Note that the two families of Proposition 1 intersect at the point a= c= 0 and

b= 1.
Now we shall study when the Rössler systems having a zero–Hopf equilib-

rium point at the origin of coordinates have a zero–Hopf bifurcation producing some
periodic orbit.
Theorem 2 . Let (a,b,c) = (ā+ εα,1 + εβ, ā+ εγ) be with ā ∈ (−

√
2,
√

2) \ {0}
and ε a sufficiently small parameter. If(

−α+a
(
1−a2

)
β+γ

)((
a2−1

)
α+aβ+

(
1−a2

)
γ
)
< 0 (3)

and
α+aβ−γ 6= 0, (4)

then the Rössler system (1) has a zero–Hopf bifurcation at the equilibrium point
localized at the origin of coordinates, and a periodic orbit borns at this equilibrium
when ε = 0, and it exists for ε > 0 sufficiently small. Moreover, the stability or
instability of this periodic orbit is given by the eigenvalues

A±
√
B

2a2(2−a2)3/2
, (5)

where
A= (2−a2)(α−aβ−γ),

B =
(
3a4−4

)
α2 + 2a

(
2a6−3a4 + 4

)
αβ−2

(
3a4−4

)
αγ

+a2
(
3a4−4

)
β2−2a

(
2a6−3a4 + 4

)
βγ+

(
3a4−4

)
γ2.

Theorem 3 . Let (a,b,c) = (εα, b̄+εβ,εγ) be with b̄ ∈ (−1,∞) and ε a sufficiently
small parameter. Using the averaging theory of first order we cannot find periodic
orbits bifurcating from the zero–Hopf equilibrium point localized at the origin of
coordinates of the Rössler system (1).

Theorem 2 and 3 are proved in section 4 using the averaging theory of first
order.

If a(ab− c) 6= 0 then the Rössler system (1) has a second equilibrium point,
namely

p=

(
ab− c
a

,c−ab, c−ab
a

)
.
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If we translate this equilibrium point at the origin of coordinates the Rössler system
(1) becomes

ẋ=−y−z,

ẏ = x+ay,

ż =
c

a
x−abz+xz.

(6)

So system (6) coincides with system (1), if we rename the coefficients c/a and ab of
ż by b and c respectively. In other words, doing this change in the parameters of the
system we can obtain equivalent theorems to Theorem 2, and 3 for the equilibrium p.

It is important to remark that the tools used here for studying the zero–Hopf
bifurcations of the Rössler system can be applied for studying arbitrary zero–Hopf
bifurcations of differential systems in Rn with n > 2.

2. RESULTS ON THE PERIODIC ORBITS

In this section we present a brief summary on the results about the periodic
orbits of the Rössler system (1).

In Gledinning and Sparrow (1984), Glendinning and Sparrow studied the dy-
namics near homoclinic orbits, and applied their studies to the Rössler system show-
ing the existence of periodic orbits near some homoclinic orbits.

Magnitskii (1995) did a qualitative analysis of the Hopf bifurcation (the ap-
pearance of periodic solutions) in the Rössler system. He finds the domain of the
parameters a and b in which the Hopf bifurcation occurs as the bifurcation parameter
c increases, obtains asymptotic formulas for the amplitude and period of the periodic
solutions that arise in a neighborhood of the bifurcation point, and provide some
information about their stability.

Krishchenko (1996) estimated domains for the existence of periodic orbits of
differential systems in Rn, and applied them to the Rössler system showing that all
its periodic orbits lie inside a bounded domain.

Terekhin and Panfilova (1991) determined conditions for the existence of peri-
odic solutions of the Rössler system in a neighborhood of the two equilibrium points
of the system when c2−4ab > 0.

Ashwin et al. (2003) studied numerically the dynamics of the Rössler system
and provided some information on its periodic orbits.

Pilarczyk (2003) developed a numerical method based on the Conley index
theory, and applied it to the Rössler system showing the existence of two periodic
orbits.

Galias (2006) described a numerical method that approximates short–period
orbits, he implemented and tested the method in the Rössler system.
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Llibre et al. (2007) studied the Hopf bifurcation using averaging theory of first
order, and applied it to the Rössler system.

Algaba et al. (2007) studied the periodic orbits and their bifurcations near a
triple–zero singularity, and they apply their results to the Rössler system using nu-
merical tools and they found an important number of bifurcations of periodic orbits.

Starkov and Starkov (2007) used compact invariant sets of the Rössler system
for studying the existence and non–existence of periodic orbits.

3. THE AVERAGING THEORY FOR PERIODIC ORBITS

The averaging theory is a classical and matured tool for studying the behavior
of the dynamics of nonlinear smooth dynamical systems, and in particular of their pe-
riodic orbits. The method of averaging has a long history that starts with the classical
works of Lagrange and Laplace who provided an intuitive justification of the process.
The first formalization of this procedure is due to Fatou (1928) in 1928. Important
practical and theoretical contributions in this theory were made by Bogoliubov and
Krylov (see Bogoliubov and Krylov (1934) and Bogoliubov (1945)). The averaging
theory of first order for studying periodic orbits can be found in Verhulst (1991), see
also Guckenheimer and Holmes (1990). It can be summarized as follows.

Now we shall present the basic results from averaging theory that we need for
proving the results of this paper.

The next theorem provides a first order approximation for the periodic solutions
of a periodic differential system, for the proof see Theorems 11.5 and 11.6 of Verhulst
(1991).

Consider the differential equation

ẋ = εF (t,x) +ε2G(t,x,ε), x(0) = x0 (7)

with x ∈ D, where D is an open subset of Rn, t ≥ 0. Moreover we assume that
both F (t,x) and G(t,x,ε) are T−periodic in t. We also consider in D the averaged
differential equation

ẏ = εf(y), y(0) = x0, (8)
where

f(y) =
1

T

∫ T

0
F (t,y)dt. (9)

Under certain conditions, equilibrium solutions of the averaged equation turn out to
correspond with T−periodic solutions of equation (7).
Theorem 4 . Consider the two initial value problems (7) and (8). Suppose:

(i) F , its Jacobian ∂F/∂x, its Hessian ∂2F/∂x2, G and its Jacobian ∂G/∂x are
defined, continuous and bounded by a constant independent of ε in [0,∞)×D
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and ε ∈ (0,ε0].

(ii) F and G are T−periodic in t (T independent of ε).

Then the following statements hold.

(a) If p is an equilibrium point of the averaged equation (8) and

det

(
∂f

∂y

)∣∣∣∣
y=p

6= 0, (10)

then there exists a T−periodic solutionϕ(t,ε) of equation (7) such thatϕ(0,ε)→
p as ε→ 0.

(b) The stability or instability of the limit cycle ϕ(t,ε) is given by the stability or
instability of the equilibrium point p of the averaged system (8). In fact the
singular point p has the stability behavior of the Poincaré map associated to the
limit cycle ϕ(t,ε).

4. PROOFS

Proof 5 (Proof of Proposition 1) . The characteristic polynomial of the linear part
of the Rössler system at the origin is

p(λ) =−λ3 + (a− c)λ2 + (ac−1− b)λ+ab− c.

Imposing that p(λ) =−λ(λ2 +ω2), we obtain

(i) a= c=±
√

2−ω2 and b= 1 for ω ∈ (0,
√

2); and

(ii) a= c= 0 and b= ω2−1 for ω ∈ (0,∞).

So the proposition follows.

Proof 6 (Proof of Theorem 2) . If (a,b,c) = (ā+ εα,1 + εβ, ā+ εγ) with ε > 0 a
sufficiently small parameter, then the Rössler system becomes

ẋ=−y−z,
ẏ = x+

(
ā+εα

)
y,

ż = (1 +εβ)x−
(
ā+εγ

)
z+xz.

(11)

Doing the rescaling of the variables (x,y,z) = (εX,εY,εZ), system (11) in the
new variables (X,Y,Z) writes

Ẋ =−Y −Z,
Ẏ =X+ āY +εαY,

Ż =X− āZ+ε(βX−γZ+XZ).

(12)
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Now we shall write the linear part at the origin of the differential system (12)
when ε= 0 into its real Jordan normal form, i.e. as 0 −

√
2− ā2 0√

2− ā2 0 0
0 0 0

 .
For doing that we consider the linear change (X,Y,Z)→ (u,v,w) of variables given
by

X =
(ā2−2)v− ā

(√
2− ā2u+w

)
ā2−2

,

Y =

√
2− ā2u+w

ā2−2
,

Z =−
ā(2− ā2)v+

√
2− ā2

(
ā2−1

)
u+w

ā2−2
.

(13)

In the new variables (u,v,w) the differential system (12) writes

u̇= −
√

2− ā2 v+ε
1

(2− ā2)3/2
(
α
(
1− ā2

)(√
2− ā2u+w

)
+
(
(ā2−2)v− ā

(√
2− ā2u+w

))(
β+

(
ā2−1

)
u

√
2− ā2

+ āv− w

ā2−2

)
+γ
(
ā(2− ā2)v+

√
2− ā2

(
ā2−1

)
u+w

))
,

v̇ =
√

2− ā2u+ε
αā
(√

2− ā2u+w
)

ā2−2
,

ẇ = ε
1

ā2−2

(
α
(
−
√

2− ā2u−w
)

+ ā
(

(ā2−2)v−
(√

2− ā2u+w
))

((ā2−1
)
u

√
2− ā2

+ āv− w

ā2−2
+β
)

+γ
(
ā(2− ā2)v+

√
2− ā2

(
ā2−1

)
u+w

))
.

(14)

Now we pass the differential system (14) to cylindrical coordinates (r,θ,w)
defined by u= r cosθ and v = r sinθ, and we obtain
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dr

dθ
= ε

1√
2− ā2 r

(αā√2− ā2 r2 cosθ sinθ

ā2−2
+
αārw sinθ

ā2−2

+
r cosθ

(2− ā2)3/2
(
α
(
1− ā2

)(
w+
√

2− ā2 r cosθ
)

+
(
β− w

ā2−2
+

(ā2−1)r cosθ√
2− ā2

+ ār sinθ
)

(
− āw− ā

√
2− ā2r cosθ+

(
ā2−2

)
r sinθ

)
+γ
(
w+
√

2− ā2
(
ā2−1

)
r cosθ− ā

(
ā2−2

)
r sinθ

)))
+O(ε2)

= εF1(θ,r,w) +O(ε2),
dw

dθ
= ε

1√
2− ā2 (ā2−2)

(
−α

(
w+
√

2− ā2 r cosθ
)

+
(
β− w

ā2−2
+

(
ā2−1

)
r cosθ

√
2− ā2

+ ār sinθ
)

(
− āw− ā

√
2− ā2r cosθ+

(
ā2−2

)
r sinθ

)
+γ
(
w+
√

2− ā2
(
ā2−1

)
r cosθ− ā

(
ā2−2

)
r sinθ

))
+O(ε2)

= εF2(θ,r,w) +O(ε2).

(15)

We shall apply the averaging theory described in Theorem 4 to the differential system

(15). Using the notation of section 3 we have t= θ, T = 2π, x = (r,w)T and

F (θ,r,w) =

(
F1(θ,r,w)
F2(θ,r,w)

)
, and f(r,w) =

(
f1(r,w)
f2(r,w)

)
.

It is immediate to check that system (14) satisfies all the assumptions of Theorem 4.

Now we compute the integrals (9), i.e.

f1(r,w) =
1

2π

∫ 2π

0
F1(θ,r,w)dθ

=
r
(
2(α−γ) + ā(ā(−3α+ ā(−w+β+ ā(α−γ)) + 3γ)−2β)

)
2(2− ā2)5/2

,

f2(r,w) =
1

2π

∫ 2π

0
F2(θ,r,w)dθ

=
2w(γ−α)ā2 + 2

(
r2 +w(w+ 2β)

)
ā+ 4w(α−γ)−

(
r2 + 2wβ

)
ā3

2(2− ā2)5/2
.
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The system f1(r,w) = f2(r,w) = 0 has a unique solution (r∗,w∗) with r∗ > 0,
namely

r∗ =

√
2(ā2−2)(−α+ ā(1− ā2)β+γ)((ā2−1)α+ āβ+ (1− ā2)γ)

ā3
,

w∗ =

(
ā2−2

)((
ā2−1

)
α+ āβ+

(
1− ā2

)
γ
)

ā3
,

if ā 6= 0 and(
−α+ ā

(
1− ā2

)
β+γ

)((
ā2−1

)
α+ āβ+

(
1− ā2

)
γ
)
< 0.

The Jacobian (10) at (r∗,w∗) takes the value

−
(α+ āβ−γ)

(
−α+ ā

(
1− ā2

)
β+γ

)
2(ā2−2)3

.

Moreover the eigenvalues of the Jacobian matrix

∂(f1,f2)

∂(r,w)

∣∣∣∣
(r,w)=(r∗,w∗)

are the ones given in (5). In short, the rest of the proof of the theorem follows immedi-
ately from Theorem 4 if we show that the periodic solution corresponding to (r∗,w∗)
provides a periodic orbit bifurcating from the origin of coordinates of the differential
system (11) at ε= 0.

Theorem 4 garantes for ε > 0 sufficiently small the existence of a periodic
solution (r(θ,ε),w(θ,ε)) of system (15) such that (r(0,ε),w(0,ε))→ (r∗,w∗) when
ε→ 0. So, system (14) has the periodic solution(

u(θ,ε) = r(θ,ε)cosθ,v(θ,ε) = r(θ,ε)sinθ,w(θ,ε)
)
, (16)

for ε > 0 sufficiently small. Consequently, system (12) has the periodic solution
(X(θ),Y (θ),Z(θ)) obtained from (16) through the change of variables (13). Finally,
for ε > 0 sufficiently small system (11) has a periodic solution (x(θ),y(θ),z(θ)) =
(εX(θ),εY (θ),εZ(θ)) which tends to the origin of coordinates when ε→ 0. There-
fore, it is a periodic solution starting at the zero-Hopf equilibrium point located at
the origin of coordinates when ε= 0. This completes the proof of the theorem.

Proof 7 (Proof of Theorem 3) . If (a,b,c) = (εα, b̄+εβ,εγ with ε > 0 a sufficiently
small parameter, then the Rössler system becomes

ẋ=−y−z,
ẏ = x+εαy,
ż = (b̄+εβ)x−εγz+xz.

(17)

Doing the rescaling of the variables (x,y,z) = (εX,εY,εZ), and denoting
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again the variables (X,Y,Z) by (x,y,z) system (17) writes

ẋ=−y−z,
ẏ = x+εαy,
ż = b̄x+ε(βx−γz+xz).

(18)

We shall write the linear part at the origin of the differential system (18) when
ε= 0 into its real Jordan normal form, i.e. as 0 −

√
b̄+ 1 0√

b̄+ 1 0 0
0 0 0

 .
For doing that we consider the linear change (x,y,z)→ (u,v,w) of variables given
by

x= v, y =−
√
b̄+ 1u+w

b̄+ 1
, z =

w− b̄
√
b̄+ 1u

b̄+ 1
.

In the new variables (u,v,w) the differential system (12) writes

u̇= −
√
b̄+ 1v+ε

√
b̄+ 1uα−v(w+β) + b̄

(√
b̄+ 1u(v−γ)−vβ

)
+w(α+γ)

(b̄+ 1)3/2
,

v̇ =
√
b̄+ 1u,

ẇ = ε
v(w+β)−wγ+ b̄

(
wα+vβ+

√
b̄+ 1u(−v+α+γ)

)
b̄+ 1

.

(19)
Writing the differential system (19) in cylindrical coordinates (r,θ,w) defined

by u= r cosθ and v = r sinθ, and we obtain

dr

dθ
= ε

cosθ
(
w(α+γ)− r(w+ b̄β+β)sinθ+

√
b̄+ 1r cosθ(α− b̄γ+ b̄r sinθ)

)
(b̄+ 1)2

+O(ε2)

= εF1(θ,r,w) +O(ε2),

dw

dθ
= ε

w(b̄α−γ) + r(w+ b̄β+β)sinθ− b̄
√
b̄+ 1r cosθ(−α−γ+ r sin(θ))

(b̄+ 1)3/2

+O(ε2)

= εF2(θ,r,w) +O(ε2).
(20)

It is immediate to check that system (20) satisfies all the assumptions of Theorem 4.
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Now we compute the integrals (9), i.e.

f1(r,w) =
1

2π

∫ 2π

0
F1(θ,r,w)dθ =

r(α− b̄γ)

2(b̄+ 1)3/2
,

f2(r,w) =
1

2π

∫ 2π

0
F2(θ,r,w)dθ =

w(b̄α−γ)

(b̄+ 1)3/2
.

The system f1(r,w) = f2(r,w) = 0 has a unique solution (0,0) and consequently the
averaging theory does not provide any information about the possible periodic orbits
which can bifurcate from the zero–Hopf equilibrium in this case.
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