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and Hamiltonian mechanics. We give a view of the mathematical tools associated with
fractional calculus as well as a description of some applications.

Key words: fractional derivative - Lagrangian - Hamiltonian - Euler-Lagrange equa-
tions.

1. INTRODUCTION

Lagrangian mechanics and Hamiltonian mechanics are alternative formulations
of classical Newtonian mechanics. Their importance is represented by the fact that
any of them could be used to solve a problem in classical mechanics. We emphasize
that the Newtonian mechanics requires the concept of force, while Lagrangian and
Hamiltonian systems are expressed in terms of energy.

For a system of n interacting particlesmi> 0, i= 1,2, ...,n, let qi = (xi,yi,zi),
qi ∈R3 be their position vectors with respect to an arbitrary origin and let

q = (q1,q2, ...,qn) ∈R3n

be the configuration of the system, qi = qi (t) .We have verified the Newton’s second
law

Fi =mi
..
qi,

for each particle i, i = 1,2, ...,n, where Fi is the force on the particle i. The linear
momentum of the system is

p =

n∑
i=1

mi
.
qi

and the kinetic energy is

K =
1

2

n∑
i=1

mi

∥∥ .qi∥∥2 ,
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where
∥∥ .qi∥∥2 =

.
qi ·

.
qi is the Euclidian norm.

The dynamics of this n−body system in the field deriving from the function
potential V (q) is

mi
..
qi =− ∂V

∂qi
, i= 1,2, ...,n.

In this case, the total energy E := K + V is conserved and the system is called
conservative. This system of equations is equivalent to the Euler-Lagrange equations

d

dt

(
∂L

∂
.
qi

)
− ∂L

∂qi
= 0, i= 1,2, ...,n

for the Lagrangian

L
(
t,q,

.
q
)

:=
1

2

n∑
i=1

mi

∥∥ .qi∥∥2−V (q) .

We remark that L=K−V.
The following variational principle, named Hamilton’s principle of least ac-

tion, is valid: for any differentiable Lagrangian L, the Euler-Lagrange equations are
equivalent to δS = 0, where

S [q] :=

b∫
a

L
(
t,q(t) ,

.
q(t)

)
dt

and δS is the first variation of S,

δS =
∂

∂s

b∫
a

L
(
t,q(t,s) ,

.
q(t,s)

)
dt

∣∣∣∣∣∣
s=0

,

for a deformation q(t,s) of q(t) leaving the endpoints fixed.
The above system of equations is equivalent to Hamilton’s equations,

.
q =

∂H

∂p
,

.
p =−∂H

∂q

for the Hamiltonian

H (q,p) :=
1

2

n∑
i=1

1

mi
‖pi‖2 +V (q) ,

where pi = mi
.
qi, i = 1,2, ...,n and p = (p1,p2, ...,pn) . For such a p, we have

H (q,p) =K+V.
We can also define Hamilton’s equations on R3n for any H, not necessarily
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derived from a Lagrangian:

.
q =

∂H

∂p
,

.
p =−∂H

∂q
,

for some H : R3n×R3n →R, called Hamiltonian. Of course, the Hamiltonian is
conserved.

The Euler-Lagrange equations and Hamilton’s principle form the basis of La-
grangian (or Hamiltonian) mechanics. The power of Lagrangian (Hamiltonian) me-
chanics is that the given equations are characterized with only one scalar functional,
the Lagrangian L, or the Hamiltonian H . Generaly, these functionals only describe
conservative systems. There have been some approaches at describing non-conserva-
tive systems in such formalism. The method presented by Rayleigh introduce a
functional R (called Rayleigh’s dissipation function) and rewrite the Euler-Lagrange
equations in the following form:

d

dt

(
∂L

∂
.
qi

)
− ∂L

∂qi
+
∂R

∂
.
qi

= 0, i= 1,2, ...,n,

where L is the system’s Lagrangian. These equations provide a way to treat dissipa-
tive systems, but by means of two scalar functionals, not one. This is an objection to
this method.

Riewe proposed an approach to incorporate non-conservative systems to the
field of variational mechanics using fractional calculus (Riewe, 1996; Riewe, 1997).
He has shown that Lagrangian with fractional derivative lead to equations of motion
with non-conservative classical forces such as friction and this formalism could be
applied to a fractional force proportional to the velocity. On the other hand, Riewe
(1997) presented a method to obtain potentials for non-conservative forces in order
to introduce dissipative effects to the Lagrangian and Hamiltonian mechanics.

The Hamiltonian and Lagrangian involving fractional derivative is also used to
derive the equation damped harmonic oscillator (see Tarawneh et al., 2010). There-
fore, the dynamical systems with fractional order can be dissipative. For this reason,
the theory and methods of fractional calculus are extensively used for describing crit-
ical phenomena in non-equilibrium systems of physics and mechanics, especially in
the complex systems.

2. FRACTIONAL DERIVATIVES

Fractional calculus, which generalize the classical calculus, is the theory of
derivatives and integrals of arbitrary non-integer order. In the last years interest in
fractional calculus has been stimulated by the applications in different areas of sci-
ence and engineering. In the mathematical modelling of many systems and processes,
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the new fractional-order models are more adequate than the integer-order models. In
the recent years, fractional derivatives have played a important role in very diverse
topics such as classical mechanics, scaling phenomena, fractals and multi-fractals
dynamics, dispersion and turbulence, astrophysics, potential theory, viscoelasticy,
electrodynamic, optics, and thermodynamic.

In the sequel, we give a description of the basic concepts of fractional calcu-
lus. Several definitions of a fractional derivative have been proposed, as Riemann–
Liouville, Grunwald–Letnikov, Weyl, Caputo, Marchaud, and Riesz fractional deriva-
tives (see Samko et al., 1993; Podlubny, 1999; Hilfer, 2000; Kilbas et al., 2006; Hil-
fer, 2008). We present two definitions: Riemann-Liouville fractional derivative and
Caputo fractional derivative.

Let f : [a,b] → R be a function, where a and b can even be infinite. The
left Riemann-Liouville fractional derivative (with fixed lower terminal a and moving
upper terminal t) is defined by

aD
α
t f (t) =

1

Γ(n−α)

(
d

dt

)n t∫
a

f (u)

(t−u)α+1−ndu

and the right Riemann-Liouville fractional derivative (with moving lower terminal t
and fixed upper terminal b) is defined by

tD
α
b f (t) =

1

Γ(n−α)

(
− d

dt

)n b∫
t

f (u)

(u− t)α+1−ndu,

where n−1≤ α < n, Γ represents the Euler gamma function

Γ(z) =

∞∫
0

tz−1e−tdt

and
(
d
dt

)n
stands for ordinary derivatives of integer order n. Alternative definitions

of Riemann-Liouville fractional derivatives are Caputo derivatives. The left Caputo
fractional derivative defined as

C
aD

α
t f (t) =

1

Γ(n−α)

t∫
a

(t−u)n−α−1
(

d

du

)n
f (u)du

and the right Caputo fractional derivative

C
t D

α
b f (t) =

1

Γ(n−α)

b∫
t

(u− t)n−α−1
(
− d

du

)n
f (u)du,
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where the order α satisfies n− 1 ≤ α < n. The Riemann-Liouville derivative of
constant is not zero, although Caputo derivative of a constant is zero. Following
Podlubny (1999), the left derivative and the right derivative are operations performed
on the past states, respectively on the future states, of the process f. If u < t, where
t is the present moment, then the state f (u) belongs to the past of the process f ; if
u > t, then f (u) belongs to the future of the process f. Thus, the present state of the
process f (t) , which started at u= a, depends on all its past states f (u), a≤ u < t.

If α is an integer, the Riemann-Liouville derivatives are defined in the usual
sense, i.e.

aD
α
t f (t) =

(
d

dt

)α
f (t) , tD

α
b f (t) =

(
− d

dt

)α
f (t) ,

where α= 1,2,3, ...
For α ∈R+, we can also define the operators aJαt and tJ

α
b on L1 ([a,b]) :

aJ
α
t f (t) =

1

Γ(α)

t∫
a

f (u)

(t−u)1−α
du

and

tJ
α
b f (t) =

1

Γ(α)

b∫
t

f (u)

(u− t)1−α
du.

These operators are called the left and the right fractional Riemann-Liouville inte-
grals of order α ∈ R+, respectively. It is easy to see that the Riemann-Liouville
fractional integrals converge for any integrable function f. For integer α, α= n, the
fractional Riemann-Liouville integrals coincide with the usual integer order n-fold
integration (Cauchy formula for n-fold integration):

t∫
a

tn∫
a

tn−1∫
a

...

t3∫
a

t2∫
a

f (t1)dt1dt2...dtn−1dtn =
1

Γ(n)

t∫
a

f (u)

(t−u)1−n
du.

The integration operators aJαt and tJ
α
b play a role in the definition of fractional cal-

culus. The left and the right Riemann-Liouville fractional derivative of order α > 0
are

aD
α
t f (t) =Dn

t aJ
n−α
t f (t) , tD

α
b f (t) = (−1)nDn

t tJ
n−α
b f (t) ,

with n = [α] + 1 and Dn
t is the ordinary derivative of integer order n. The left and

the right Caputo fractional derivatives of order α ∈R+are
C
aD

α
t f (t) =a J

n−α
t Dn

t f (t) , C
t D

α
b f (t) = (−1)n tJ

n−α
b Dn

t f (t) .
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We observe that the formula of fractional derivative involves an integration
which is a non-local operator, so fractional derivative is a non-local operator. Thus,
calculating time-fractional derivative of a function f(t) at some time t, it is required
all the previous history from 0 to t. Time-fractional derivatives are naturally related
to systems with memory. These systems are closely related to fractals, which are
present in most physical systems.

A property of the fractional operator is

aD
p
t

(
aD
−q
t f (t)

)
=a D

p−q
t f (t) ,

where f is continuous and 0≤ q ≤ p. For p > 0 we obtain the fundamental property
of Riemann-Liouville fractional derivative

aD
p
t

(
aD
−p
t f (t)

)
= f (t) .

This formula means that the Riemann-Liouville fractional differentiation operator is
a left inverse to the Riemann-Liouville fractional integration operator of some order.
We also remark the following properties:

aD
α
t f (t) =

dn

dtn
aD

α−n
t f (t) , tD

α
b f (t) = (−1)n

dn

dtn
tD

α−n
b f (t) ,

C
aD

α
t f (t) =a D

α
t f (t)− t−α

Γ(1−α)
f (a) ,

C
t D

α
b f (t) =t D

α
b f (t)− (1− t)−α

Γ(1−α)
f (b) .

The Mittag-Leffler functions Eα and Eα,β naturally occur in solutions of fractional
order differential equations. Mittag-Leffler (1903) defined the function Eα as the
power series

Eα (z) =
∞∑
k=0

zk

Γ(αk+ 1)
, α > 0

and Wiman (1905) obtained the generalisation of Eα, denoted Eα,β (Eα = Eα,1;
E1 = expz):

Eα,β (z) =
∞∑
k=0

zk

Γ(αk+β)
, α > 0, β > 0.
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3. FRACTIONAL EULER-LAGRANGE EQUATIONS

Riewe has used the fractional calculus to develop a formalism which can be
used for both conservative and non conservative systems (see Riewe, 1996; Riewe,
1997). Using the fractional approach, one can obtain the Euler-Lagrange and the
Hamiltonian equations of motion for the non-conservative systems. The classical cal-
culus of variations was extended by Agrawal (2002) for systems containing Riemann-
Liouville fractional derivatives. Mathematical tools analogous to calculus of varia-
tions will be needed to minimize certain functionals. Many of the concepts and
results of classical calculus of variations can be extended with minor modifications
to fractional calculus of variations. The fractional Euler-Lagrange equations are a set
of differential equations involving both the left and the right fractional derivatives.

A fractional calculus of variations problem contains at least one fractional
derivative term. We denote by F1 the set of all functions q(t) which have continuous
left Riemann-Liouville fractional derivative of order α and right Riemann-Liouville
fractional derivative of order β for x ∈ [a,b] and satisfy the conditions q(a) = qa,
q(b) = qb. The problem can be defined as follows: find the function q ∈F1 for which
the functional

S[q] =

b∫
a

L
(
t,q,aD

α
t q (t) ,tD

β
b q (t)

)
dt

has an extremum, where L(t,q,u,v) be a function with continuous first and second
partial derivatives with respect to all its arguments.

A necessary condition for S[q] to have an extremum for a given function q(t)
is Euler–Lagrange equation (Agrawal, 2002):

∂L

∂q
+tD

α
b

∂L

∂ aDα
t q

+aD
β
t

∂L

∂ tD
β
b q

= 0.

The generalized momenta are introduced as

pα =
∂L

∂ aDα
t q
, pβ =

∂L

∂ tD
β
b q

and the Hamiltonian depending on the fractional time derivatives is

H = pα aD
α
t q+pβ tD

β
b q−L

(
t,q,aD

α
t q (t) ,tD

β
b q (t)

)
.

The Hamilton’s equations of motion are obtained in a similar manner to the usual
mechanics (Rabei et al., 2007):

∂H

∂t
=−∂L

∂t
,

∂H

∂pα
=a D

α
t q,
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∂H

∂pβ
=t D

β
b q,

∂H

∂q
=t D

α
b pα+aD

β
t qpβ.

We remark that the fractional Hamiltonian is not a constant of motion even if the
Lagrangian does not explicitly depend on the time.

When α= β = 1,

aD
α
t q =

dq

dt
, tD

β
b q =−dq

dt

the above functional reduces to the simplest form

S[q] =

b∫
a

L
(
t,q,

.
q
)

dt

and Euler–Lagrange equation is

d

dt

(
∂L

∂
.
q

)
− ∂L
∂q

= 0.

We can generalize in a straight forward manner to problems containing several
unknown functions. We denote by Fn the set of all functions q1(t), q2(t), ..., qn(t)
which have continuous left Riemann-Liouville fractional derivative of order α and
right Riemann-Liouville fractional derivative of order β for x ∈ [a,b] and satisfy the
conditions

qi(a) = qia, qi(b) = qib, i= 1,2, ...,n.

The problem can be defined as follows: find the functions q1, q2, ..., qn from Fn, for
which the functional

S[q1, q2, ..., qn] =

=

b∫
a

L
(
t,q1(t), q2(t), ..., qn(t),aD

α
t q1 (t) , ...,aD

α
t qn (t) ,tD

β
b q1 (t) , ...,tD

β
b qn (t)

)
dt

has an extremum, where L(t,q1, ..., qn,u1, ...,un,v1, ...,vn) is a function with contin-
uous first and second partial derivatives with respect to all its arguments.A necessary
condition for S[q1, q2, ..., qn] to admit an extremum is that q1(t), q2(t), ..., qn(t) sat-
isfy Euler-Lagrange equations:

∂L

∂qi
+tD

α
b

∂L

∂aDα
t qi

+aD
β
t

∂L

∂tD
β
b qi

= 0 i= 1,2, ...,n.
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In vector notation, the above condition can be written as
∂L

∂q
+tD

α
b

∂L

∂aDα
t q

+aD
β
t

∂L

∂tD
β
b q

= 0,

where q ∈Rn.

4. SOME APPLICATIONS ON CONSERVATIVE AND NON-CONSERVATIVE SYSTEMS

A simple harmonic oscillator is a conservative system. This system consists of
a force F which pulls the mass m in the direction of the point x = 0 and depends
only on the mass’s position x and a constant k. The Newton’s second law for this
system is

F =m
d2x

dt2
=−kx.

The motion is described by the function x(t) =Acos(ωt+ϕ) , where

ω =

√
k

m
=

2π

T
.

The force F is conservative with the potential energy function

V (x) =
1

2
kx2.

The Lagrangian of the particle can be written

L
(
t,x,

.
x
)

=
1

2
m

.
x
2−V (x) .

and the equations of motion are retrieved by applying the Euler–Lagrange equation

d

dt

(
∂L

∂
.
x

)
− ∂L
∂x

= 0.

We have
∂L

∂x
=−dV

dx
,

∂L

∂
.
x

=m
.
x.

Thus

m
..
x+

dV

dx
= 0, m

..
x+kx= 0.

We observe that if the Lagrangian of a system is known, then the equations of motion
may be obtained by the Euler–Lagrange equations. The Lagrangian of a system is
not unique. Lagrangians which describe the same system can differ by the total
derivative with respect to time of some function, but they will give the same equations
of motion.
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We consider now a fractional Lagrangian of the above oscillatory system

L(t,x,aD
α
t x) =

1

2
m (aD

α
t x)2− 1

2
kx2.

Then the fractional Euler–Lagrange equation is

m tD
α
b (aD

α
t x)−kx= 0,

This equation reduces to the equation of motion of the harmonic oscillator when
α→ 1.

If we consider the system of two planar pendula, both of length l and mass m,
suspended a same distance apart on a horizontal line so that they moving in the same
plane, the kinetic energy is

K =
1

2
m
(
.
q
2
1 +

.
q
2
2

)
and the potential energy is

V =
1

2

mg

l

(
q21 + q22

)
,

where q1 and q2 denote the corresponding coordinates and g is the gravity constant
(see Baleanu et al. (2012), for two-electric pendulum). The Lagrangian has the
following form:

L
(
t,q1,

.
q1, q2,

.
q2
)

=
1

2
m
(
.
q
2
1 +

.
q
2
2

)
− 1

2

mg

l

(
q21 + q22

)
.

The fractional form of this Lagrangian is given by

L(t,q1, q2,aD
α
t q1,aD

α
t q2) =

1

2
m
[
(aD

α
t q1)

2 + (aD
α
t q2)

2
]
− 1

2

mg

l

(
q21 + q22

)
.

To obtain Euler-Lagrange equations, we use

∂L

∂qi
+tD

α
b

∂L

∂aDα
t qi

+aD
β
t

∂L

∂tD
β
b qi

= 0 i= 1,2.

It follows

tD
α
b aD

α
t q1−

g

l
q1 = 0, tD

α
b aD

α
t q2−

g

l
q2 = 0.

The classical Euler-Lagrange equations are obtained if α→ 1 :

..
q1 +

g

l
q1 = 0,

..
q2 +

g

l
q2 = 0.

As non-conservative system, we consider the damped harmonic oscillator. In
this case, the frictional force Ff can be modeled as being proportional to the veloc-
ity v of the object, Ff = −cv, where c is the viscous damping coefficient. From
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Newton’s second law, it follows that

F =−kx− cdx

dt
=m

d2x

dt2
,

i.e.

m
..
x+ c

.
x+kx= 0.

The fractional Lagrangian and the fractional Rayleigh’s dissipation function
which describe this motion are

L(t,x,aD
α
t x) =

1

2
m (aD

α
t x)2− 1

2
kx2 and R=

1

2
(aD

α
t x)2 .

In this case,

Ff =−k aD
α
t x

and is derivable from fractional Rayleigh’s dissipative function R= 1
2 (aD

α
t x)2 . We

modify the standard fractional Euler-Lagrange equations by including the fractional
Rayleigh’s dissipation function with a time fractional derivative of the displacement.
The fractional Euler–Lagrange equation takes the form

∂L

∂x
+tD

α
b

∂L

∂ aDα
t x

+aD
β
t

∂L

∂ tD
β
b x
− ∂R

∂ aDα
t x

= 0.

Substituting L and R in this equation we obtain

m tD
α
b x (aD

α
t x)− ca (Dα

t x)−kx= 0.

For α→ 1 we get the equation of motion of the damped harmonic oscillator m
..
x+

c
.
x+kx= 0.

We can try to construct the classical mechanics related to the fractional calcu-
lus. We can introduce the fractional velocity v(t) and fractional acceleration a(t) as
follows :

v (t) =C
0 D

α
t x(t) , a(t) =C

0 D
α
t v (t) ,

where C
0 D

α
t f (t) is the left Caputo fractional derivative (with fixed lower terminal 0

and moving upper terminal t)

C
0 D

α
t f (t) =

1

Γ(1−α)

t∫
0

(t−u)−α
d

du
f (u)du, 0< α < 1.

In the fractional mechanics, we can define Newton’s equation by

F =ma=m C
0 D

α
t v (t) ,
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wherem is a mass of the body. For a body in a resisting medium in which there exists
a retarding force proportional to the fractional velocity in a uniform gravitational
field, the equation of vertical motion is given by

m C
0 D

α
t v =mg−kv, v (0) = 0,

which is a fractional Cauchy problem. If we integrate this equation, we obtain

v (t) = gD−αt (1)− k

m
D−αt (v (t)) .

In order to find the formula of v (t) , we use a result from Saxena et al. (2010), which
yields

v (t) =
mg

k

[
1−Eα

(
− k
m
tα
)]

.

In the classical mechanics,

m
.
v =mg−kv, v (0) = 0,

has the solution
v (t) =

mg

k

[
1−e−

k
m
t
]
.

We note that the terminal velocity is the same in both cases

lim
t→∞

v (t) =
mg

k
.

An extension of fractional Cauchy problem for general operators is given in
Popescu (2010). Using a space-time fractional equation, in Popescu and Popescu
(2010), the scaling and intermittent behavior of probability density functions of solar
wind plasma parameters fluctuations is analized.

5. CONCLUSIONS

This paper intended to report some of the important results in the area of frac-
tional calculus with applications to mechanics. Fractional differential models play a
significant role in the description of the dynamics of many complex systems. It is pre-
sented an extension of variational calculus within the framework of fractional calcu-
lus. Fractional variational principles contain classical ones as a particular case when
fractional operators converge to ordinary differential operators. Fractional mechan-
ics, which is a non-local theory, describes both conservative and non-conservative
systems. Using fractional derivatives and initial values of classical integer-order
derivative with known physical interpretations, some illustrative applications on con-
servative and non-conservative systems were given.
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