
AN EQUATION FOR ASTRONOMICAL DETERMINATION
OF THE MOMENTS OF INERTIA OF THE EARTH

IERONIM MIHǍILǍ
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Abstract. Using the properties of invariance of the moments of inertia with respect to
the reduction of the equation of the ellipsoid of inertia to the canonical form, an equa-
tion for determination of the polar moment of inertia is established. Thus the number
of equations for determination of the moments of inertia from the five harmonic coeffi-
cients of the second degree of the geopotential is equal to the number of unknowns. On
the other hand, it is shown that the assumption of Erzhanov and Kalybaev concerning a
certain relation between the moments of inertia about the axes of the geocentric coor-
dinate system in which the series of the potential is given and the dynamical flattening
is justified. New formulae for determination of the Eulerian angles concerning the ori-
entation of the ellipsoid of inertia are obtained. The moments of inertia in the case of
the Standard Earth II are computed.
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1. INTRODUCTION

Theoretically, if the density distribution inside the Earth is a known function,
its moments of inertia can be computed. The difficulty consists in the fact that this
function is unknown, and it is necessary to make different assumptions about the
Earth’s internal constitution. A first approximation is obtained considering the Earth
homogeneous. Improved values of the moments can be obtained considering the
Earth constituted of homogeneous layers and the density a piecewise continuous and
decreasing function from the center to the surface.

A possibility for a more precise determination of the moments of inertia of
the Earth is offered by the series of the geopotential obtained by means of the Earth’s
artificial satellites. The five harmonic coefficients of the second degree, which are de-
termined from observations, depend of the six unknown moments of inertia. There-
fore, using these harmonic coefficients, one obtains five equations for the six mo-
ments of inertia. The system of equations would be complete if a new equation
is added. Erzhanov and Kalybaev (1975, 1984) proposed the equation [C ′− (A′+
B′)/2]/C ′ =H , where the dynamical flattening H is obtained from the constant of
lunisolar precession and A′, B′, C ′ are the unknown moments of inertia with re-
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spect to the geocentric coordinate system in which the series is given. But, because
H = [C−(A+B)/2]/C, A, B, C being the principal moments of inertia, it is neces-
sary to prove that [C ′− (A′+B′)/2]/C ′ can be replaced by H . In the present paper,
this assumption is proved. For this purpose, using the properties of invariance of the
moments with respect to the reduction of the equation of the ellipsoid of inertia to
the canonical form, an equation for determination of the polar moment is established.
Then new formulae concerning the orientation of the ellipsoid of inertia are obtained,
and the moments of inertia for the Standard Earth II are computed.

2. THE GEOPOTENTIAL AND THE MOMENTS OF INERTIA

In the geocentric coordinate system Oξηζ, in which the axis Oζ is oriented
toward the Conventional International Origin, and the plane Oξζ is the origin plane
for longitude (Greenwich meridian plane), the gravitational potential of the Earth is
given by the series

U(r,φ,λ) =
GM

r
[1−
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r

)n
JnPn(sinφ) (1)

+
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n=2

n∑
k=1
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)n
P (k)
n (sinφ)(Cnkcoskλ+Snksinkλ)],

where G is the gravitational constant, M and ae are the mass and the equatorial
radius of the Earth, Pn is the polynomial of Legendre of nth degree, and P

(k)
n is the

associated function of Legendre of nth degree and kth order. On the other hand, r,
λ, φ are the polar coordinates, r being the geocentric distance, λ the longitude and φ
the geocentric latitude.

The harmonic coefficients of the second degree can be expressed in function of
the moments of inertia. One obtains the following relations

Ma2eJ2 = C ′− A′+B′

2
, (2)

4Ma2eC22 = B′−A′,

Ma2eC21 = E′,

Ma2eS21 = D′,

2Ma2eS22 = F ′.

These five relations and the relation proposed by Erzhanov and Kalybaev,

H =
C ′− (A′+B′)/2

C ′ , (3)

allow the determination of the moments A′, B′, C ′, D′, E′, F ′. For the moments of
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inertia in the system Oξηζ we keep the notations utilized by Erzhanov and Kalybaev
(1984), namely

A′ =

∫
V
ρ(ξ,η,ζ)(η2+ ζ2)dv, (4)

B′ =

∫
V
ρ(ξ,η,ζ)(ξ2+ ζ2)dv,

C ′ =

∫
V
ρ(ξ,η,ζ)(ξ2+η2)dv,

D′ =

∫
V
ρ(ξ,η,ζ)ζηdv,

E′ =

∫
V
ρ(ξ,η,ζ)ζξdv,

F ′ =

∫
V
ρ(ξ,η,ζ)ξηdv,

where V is the domain occupied by the Earth and ρ is the density.
The presented form of the geopotential has been recommended by the Interna-

tional Astronomical Union (Hagihara, 1962). But in the papers consecrated to the
determination of the coefficients of the geopotential is frequently used the following
form (Aksenov, 1977)

U =
GM

r
[1−
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+
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where p
(k)
n is the fully normalized associated function of Legendre, and the coeffi-

cients Cnk and Snk have the expressions

Cnk =

√
(n+k)!

2(n−k)!

Cnk√
2n+1

, (6)

Snk =

√
(n+k)!

2(n−k)!

Snk√
2n+1

.

We mention that the geopotential can be also represented by another series (Erzhanov
and Kalybaev, 1984; Mueller, 1964).
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For the normalized coefficients of the second degree one obtains

C21 =

√
3

5
C21, S21 =

√
3

5
S21, (7)

C22 =

√
12

5
C22, S22 =

√
12

5
S22.

3. AN EQUATION FOR DETERMINATION OF THE POLAR MOMENT OF INERTIA

The five relations (2) are insufficient to determine the six moments of inertia.
For this reason it is necessary to deduce another equation.

In the geocentric coordinate system Oξηζ, the equation of ellipsoid of inertia
is

A′ξ2+B′η2+C ′ζ2−2D′ηζ−2E′ξζ−2F ′ξη = 1. (8)

In the system Oxyz, defined by the principal axes of inertia, the equation becomes

Ax2+By2+Cz2 = 1, (9)

A, B, C being the principal moments of inertia, which can be determined by solving
the secular equation

∣∣∣∣∣∣
A′− q −F ′ −E′

−F ′ B′− q −D′

−E′ −D′ C ′− q

∣∣∣∣∣∣= 0 (10)

or

q3− (A′+B′+C ′)q2+ (11)

+(A′B′+A′C ′+B′C ′−D′2−E′2−F ′2)q−
−(A′B′C ′−2D′E′F ′−A′D′2−B′E′2−C ′F ′2) = 0.

Because the values A, B, C of the principal moments of inertia do not depend
on the orientation of the system Oξηζ, it results that the coefficients of the secular
equation are invariant. Therefore we can write

A+B+C = A′+B′+C ′, (12)

AB+AC+BC = A′B′+A′C ′+B′C ′−D′2−E′2−F ′2,

ABC = A′B′C ′−2D′E′F ′−A′D′2−B′E′2−C ′F ′2.

From the expression of the dynamical flattening

H =
C− (A+B)/2

C
(13)
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one obtains

C =
A+B

2(1−H)
. (14)

On the other hand, taking into account the relations

A+B+C = A′+B′+C ′,

Ma2eJ2 = C ′− (A′+B′)/2,

we obtain

C =
3C ′−2J2Ma2e

3−2H
. (15)

From the relations AB+AC+BC =AB+(A+B)C = h, ABC = k, where
h and k are the values of the corresponding invariants, we can write AB = k/C
and k/C +(A+B)C = h, and therefore A+B = h/C − k/C2. Substituting this
expression of A+B in the expression (14) of C, it results

2(1−H)C3−hC+k = 0 (16)

or

2(1 − H)

(
3C ′−2J2Ma2e

3−2H

)3

(17)

−3C ′−2J2Ma2e
3−2H

(A′B′+A′C ′+B′C ′−D′2−E′2−F ′2)

+A′B′C ′−2D′E′F ′−A′D′2−B′E′2−C ′F ′2 = 0.

But, from the relations A′+B′=2C ′−2J2Ma2e =2C ′+a′, B′−A′=4Ma2eC22=
b′, where a′ =−2J2Ma2e and b′ = 4Ma2eC22 are known, one obtains

A′ = C ′+
a′− b′

2
, (18)

B′ = C ′+
a′+ b′

2
.

Substituting in the last equation, this becomes

ax3+ bx2+ cx+d= 0, (19)

where
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x = C ′, (20)

a = 8H3,

b = 8H3a′,

c = −2H(3−4H)a′2+2H(3−2H)2(
a′2− b′2

4
−D′2−E′2−F ′2),

d = −2(1−H)a′3+(3−2H)2a′(
a′2− b′2

4
−D′2−E′2−F ′2)+

+(3−2H)3(2D′E′F ′+
a′+ b′

2
E′2+

a′− b′

2
D′2).

Because for the models of geopotential a > 0, b < 0, c < 0, d < 0, according to
Descartes’ rule of signs, the obtained equation (19) has only one positive root.

The system of six independent equations (2) and (19) allows the determination
of the moments of inertia A′, B′, C ′, D′, E′, F ′. On the other hand, solving the
secular equation one obtains the principal moments A, B, C.

Because the Earth’s mass is determined with a less accuracy, it is preferably to
use the normalized moments of inertia A′

=A′/Ma2e, etc., and the normalized values
a′ = a′/Ma2e =−2J2, b

′
= b′/Ma2e = 4C22. In this case, the equation (19) becomes

āx̄3+ b̄x̄2+ c̄x̄+ d̄= 0, (21)

where

x = C
′
, (22)

a = 8H3,

b = 8H3a′,

c = −2H(3−4H)a′2+2H(3−2H)2(
a′2− b

′2

4
−D

′2−E
′2−F

′2
),

d = −2(1−H)a′3+(3−2H)2a′(
a′2− b

′2

4
−D

′2−E
′2−F

′2
)+

+(3−2H)3(2D
′
E

′
F

′
+

a′+ b
′

2
E

′2
+

a′− b
′

2
D

′2
).

Evidently, H = [C− (A+B)/2]/C =H . The equations (2) become

C
′− (A

′
+B

′
)

2
= J2, (23)

B
′−A

′
= 4C22,

D
′

= S21,

E
′

= C21,

F
′

= 2S22.
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On the other hand, in the case of the normalized moments the secular equation has
the same form and give the normalized principal moments A, B, C.

We mention that the value of C ′ obtained by means of the deduced equation
(Vı̂lcu, 2009) practically coincides with the value obtained taking into account the
relation [C ′− (A′+B′)/2]/C ′ = H . Thus the relation proposed by Erzhanov and
Kalybaev is justified. Evidently, because the moments D′, E′, F ′ are very small
in comparison with the moments A′, B′, C ′, practically [C ′ − (A′ +B′)/2]/C ′ =
[C− (A+B)/2]/C =H . But in the general case it is necessary to use the obtained
equation for the polar moment.

4. ORIENTATION OF THE ELLIPSOID OF INERTIA

The orientation of the ellipsoid of inertia, i.e. the orientation of the principal
axes of inertia with respect to the system Oξηζ can be given either by spherical
coordinates (longitude and geocentric latitude) or by the Eulerian angles. We shall
use the second possibility, as in the work of Erzhanov and Kalybaev (1984), but in a
different manner. Let β = ̂(Oξ,ON), α= ̂(ON,Ox), γ = ̂(Oζ,Oz) be the Eulerian
angles, ON being the line of intersection between the planes Oξη and Oxy.

Let (γi1,γi2,γi3) (i = 1,2,3) be the direction cosines of the principal axes of
inertia Ox, Oy, Oz with respect to Oξηζ. They have the following expressions

γ11 = cosβcosα− sinβsinαcosγ, (24)

γ12 = sinβcosα+cosβsinαcosγ,

γ13 = sinαsinγ,

γ21 = −cosβsinα− sinβcosαcosγ,

γ22 = −sinβsinα+cosβcosαcosγ,

γ23 = cosαsinγ,

γ31 = sinβsinγ,

γ32 = −cosβsinγ,

γ33 = cosγ,

and are given by the relations

γi1
δi1

=
γi2
δi2

=
γi3
δi3

=
1

(δ2i1+ δ2i2+ δ2i3)
1/2

, (25)

where δi1, δi2, δi3 (i=1,2,3) are the cofactors of the elements in the row i of the deter-
minant ∆ which appears in the secular equation, q being successively replaced by A,
B, C. On the other hand, the system Oxyz has the same orientation as the system
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Oξηζ, if the following condition is fulfilled (Efimov, 1972)∣∣∣∣∣∣
γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33

∣∣∣∣∣∣= 1. (26)

Once determined the direction cosines, one can obtain the Eulerian angles by
the formulae

cosγ = γ33, (27)

sinαsinγ = γ13,

cosαcosγ = γ23,

sinβsinγ = γ12γ23−γ22γ13,

cosβsinγ = γ11γ23−γ21γ13.

We mention that analogous formulae are used for determination of the angular ele-
ments in the methods of orbit determination.

If γ = 0, then the plane Oxy coincides with Oξη, and the orientation of the
ellipsoid is reduced to the orientation of the ellipse of inertia. From (24) it is results

γ11 = cos(β+α) = cosλ, (28)

γ12 = sin(β+α) = sinλ,

γ21 = −sin(β+α) =−sinλ,

γ22 = cos(β+α) = cosλ,

where λ is the longitude of the axis Ox in the plane Oξη.
Evidently, if the direction cosines are determined, then the orientation of the

principal axes can be also given by spherical coordinates, as in the case of velocity
ellipsoid of the stars (Mihaila, 1974).

5. STANDARD EARTH II

For to give an example, we present the results obtained for the geopotential
model concerning the Standard Earth II (Gaposhkin and Lambeck, 1970), a model
analyzed by Erzhanov and Kalybaev. For this model the geocentric gravitational
constant GM = 3.986013×10−14m3s−2 and the equatorial radius ae = 6378155 m.
On the other hand, the harmonic coefficients of the second degree have the values
J2 = 1082.628×10−6, C21 = S21 = 0, C22 = 2.41290×10−6, S22 =−1.36410×
10−6.

We shall use the value of the dynamical flattening given by Petit and Luzum
(2010), namely H = 0.003273795. One obtains for the normalized moments of in-
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ertia

A
′

= 0.329609368, (29)

B
′

= 0.329615598,

C
′

= 0.330695111,

D
′

= E
′
= 0,

F
′

= −1.761045528×10−6.

Solving the secular equation, it results for the normalized principal moments

A = 0.329608907, (30)

B = 0.329616059,

C = 0.330695111.

Using the value of the gravitational constant G=6.67428×10−11m3kg−1s−2, adopted
in the IAU(2009) System of astronomical constants, we obtain for the principal mo-
ments of inertia (in 1037kg ·m2)

A = 8.007187118, (31)

B = 8.008160879,

C = 8.034376902.

The values of the moments are given with nine or ten significant digits only to obtain
H with seven significant digits. We note anew that the value of the polar moment C ′

obtained by means of the deduced equation practically coincides with the value given
by the Erzhanov and Kalybaev relation, the difference being at most of the order of
10−9 for the normalized moment.

In the case of the Standard Earth II, because the angle γ = 0, the orientation
of the ellipsoid of inertia is reduced to the orientation of the ellipse of inertia in the
equatorial plane. One obtains for the longitude of the axis corresponding to the min-
imum moment (A) the value λ=−14.70. The obtained results are slightly different
from the results obtained by Erzhanov and Kalybaev (1984), who used the value
H = 0.00327364 for the dynamical flattening.

We mention that the equation was already used for different models of geopo-
tential (Vı̂lcu, 2009).

6. CONCLUSION

In the present paper an equation for determination of the polar moment of in-
ertia of the Earth is obtained. The equation contains the dynamical flattening, which
are deduced from the constant of lunisolar precession. According to Descartes’ rule



154 Ieronim MIHǍILǍ 10

of signs, this cubic equation has only one positive root. The value of the normalized
polar moment deduced by solving the equation practically coincides with the value
obtained taking into account the relation proposed by Erzhanov and Kalybaev, the
difference being at most of the order of 10−9. Therefore their assumption is justified.

The cause consists in the fact that the product of inertia (D′,E′,F ′) are very
small in comparison with the moments about the axes (A′,B′,C ′). We mention that
the obtained equation is exact not only in this case, but also in the general case. On
the other hand, the given formulae regarding the orientation of the ellipsoid of inertia
allow the univocal determination of the Eulerian angles.
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