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Abstract. Firstly it is shown that in the approximation of the homogeneous Earth the
dynamical flattening has the greatest value. Next, its value in the case of the elliptical
motion of the Moon is deduced, obtaining the value H = 0.00328022. Afterwards, it
is shown that in the case of Woolard’s theory of precession and nutation the value is
smaller, namely H = 0.00327399. Once with the adoption of the new epoch J2000
and of new values for the constant of general precession, more accurate values for
H were obtained. Our analysis revealed that the mean sidereal motion of the Sun
must be corrected by the perturbation of the mean longitude at epoch. The formula
p = 1539712.5′′H per Julian century (p being the constant of lunisolar precession),
which allows a good determination of the dynamical flattening, was established. The
most probable value of the dynamical flattening is H =0.003273795±1×10−9, value
adopted by IAU. The secular variation of the flattening is also presented.
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1. INTRODUCTION

In the last decade of the nineteenth century, Hill (1893) published an important
paper on the connection of precession and nutation with the dynamical flattening of
the Earth. In this work, instead of the elliptical motion of the Moon, the motion from
the theory of Delaunay is adopted.In the same period, Newcomb (1895) published
the fundamental work regarding the elements of the four inner planets and the as-
tronomical constants. Using Oppolzer’s developments (Oppolzer, 1882), obtained
in the case of Hansen’s theory of the Moon, he derived for the constant of lunisolar
precession and the constant of nutation for the epoch 1850 the following expressions

p = [3.68762]
C−A
C

+ [5.937585]
µ

1 +µ

C−A
C

, (1)

N = [5.36542]
µ

1 +µ

C−A
C

, (2)
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in brackets being the common logarithms of the numerical factors. In the previous
formulae, µ is the ratio of the mass of the Moon to that of the Earth, and (C−A)/C
is the dynamical flattening. The unit of time is the Julian century. We mention
that, in the expressions obtained by Newcomb, the coefficients practically coincide
with the ones obtained by Hill, which shows that Delaunay’s theory and Hansen’s
theory describe the motion of the Moon equally accurately. Taking p = 50.26′′ per
Julian year andN = 9.20′′, Newcomb obtained (C−A)/C = 0.0032753. This value
was included in the first system of astronomical constants, adopted in 1896, and
was replaced with the zonal harmonic coefficient J2 = 0.0010827 in the IAU (1964)
System and with the improved value J2 = 0.00108263 in the IAU (1976) System.
In the new IAU (2009) System of astronomical constants the last value was replaced
with more precise value J2 = 0.0010826359.

The analysis of the perturbations produced in the motion of the artificial satel-
lites led to a more precise knowledge of the Earth’s shape and size, as well as its
gravitational field. The knowledge of the five coefficients of the second order har-
monics of the series of the geopotential allows the determination of the six moments
of inertia of the Earth, if another relation between the moments is known. Erzhanov
and Kalybaev (1975, 1984) proposed the relation H = [2C − (A+B)]/2C, where
the dynamical flattening H is known. Therefore, the knowledge of the dynamical
flattening is required not only for the more accurate calculation of the nutation series
coefficients, but also to determine the moments of inertia of the Earth.

In this paper, using improved values of the astronomical data, we shall deter-
mine the dynamical flattening in the case of the elliptical motion of the Moon and in
the case of the motion from Brown’s theory. Moreover, the values of the flattening
obtained by using the more precise theories of the movement of the Sun and Moon
and the new values for the precession will be presented and improved. But firstly,
we shall calculate the flattening for the homogeneous Earth. Although in the IAU
(1976) System of astronomical constants and also in the new IAU (2009) System
was adopted the epoch J2000, in the first part of the paper the epoch 1900, January
0, is considered, epoch used in Brown’s theory and in Woolard’s work (Woolard,
1953), the latter being considered a reference work. On the other hand, the unit of
time used in the present paper is Julian century, denoted cy, and the precessional
angle is measured in the retrograde sense.

2. THE DYNAMICAL FLATTENING IN THE HOMOGENEOUS EARTH
APPROXIMATION

Let Oxyz be the coordinate system defined by the Earth’s principal axes of
inertia and its center of mass. In this system, the principal moments of inertia have
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the expressions

A =

∫
V
δ(x,y,z)(y2 +z2)dv, (3)

B =

∫
V
δ(x,y,z)(z2 +x2)dv, (4)

C =

∫
V
δ(x,y,z)(x2 +y2)dv, (5)

where V is the domain occupied by Earth and δ is the density. If the function δ is
known, the formulae allow the calculation of the moments and of the dynamical flat-
tening H = [2C− (A+B)]/2C, which occurs in Poisson’s equations for precession
and nutation. The difficulty consists in the fact that δ is not known and it is necessary
to make different assumptions about the Earth’s internal constitution.

A first approximation is obtained considering that the Earth is homogeneous
(δ = const.). In this case, we have

A=
E

5
(b2 + c2), B =

E

5
(c2 +a2), C =

E

5
(a2 + b2), (6)

where E is the mass of the Earth and a, b, c are the semi-axes of the terrestrial
ellipsoid. In the case of the ellipsoid of rotation, it follows

A=
E

5
(a2 + c2), C =

2Ea2

5
, (7)

and one obtains

H =
C−A
C

=
a2− c2

2a2
, (8)

a being the equatorial radius, and c the polar radius. Introducing the geometrical
flattening f = (a−c)/a, one obtains H = f−f2/2. Note that the dynamical flatten-
ing is less than the geometrical one. Using the value f = 1/298.257 = 0.00335231
from the IAU (1976) System, it follows H = 1/299.260 = 0.00334157. If the new
value f = 1/298.256 from IAU (2009) System is used, it results H = 0.00334720.
An improved value of H can be obtained considering the Earth consisting of homo-
geneous layers and δ a piecewise continuous and decreasing function. However, a
more accurate value is determined from the constant of lunisolar precession, without
requiring the density to be known.

3. THE DYNAMICAL FLATTENING IN THE CASE
OF THE ELLIPTICAL MOTION OF THE MOON

With a good approximation, the Poisson’s equations can be integrated using the
developments of the coordinates of the Sun and the Moon from the elliptical motion
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case. We use the theory of precession and nutation obtained by Serret in the case of
the limitation of the series to the second order terms in eccentricity and inclination,
theory exposed in Tisserand’s treatise (Tisserand, 1891) and in Smart’s book (Smart,
1953). If we consider the Earth’s ellipsoid of inertia as an ellipsoid of rotation, then
the force function that occurs in Poisson’s equations has the expression

U = −3

2
(C−A)

(
GM

z2

ρ5
+GS

z21
ρ51

)
, (9)

where G is the gravitational constant, M is the Moon’s mass, S is the Sun’s mass, ρ
and ρ1 are the geocentric distances of the two bodies, and z, z1 are the z - coordinates
of these bodies in the system defined by the Earth’s principal axes of inertia. Because
the ratio of the mass of the Earth - Moon system to that of the Sun (E+M)/S is
of the order of 3× 10−6, then with sufficient accuracy GS = n21a

3
1, where a1 and

n1 denote the semi-major axis of the heliocentric orbit of the center of mass and the
corresponding mean angular motion.

We then have

U = −3

2
(C−A)n21a

3
1

(
M

S

z2

ρ5
+
z21
ρ51

)
, (10)

or, if a denotes the semi-major axis of the Moon’s orbit, and ω denotes the angular
velocity of the rotation of the Earth,

− U

Cω
= K

[
L

(
a

ρ

)3(z
ρ

)2

+

(
a1
ρ1

)3(z1
ρ1

)2
]
, (11)

where

K =
3

2

C−A
C

n21
ω2
, (12)

L =
M

S

(a1
a

)3
. (13)

Integrating Poisson’s equations, one obtains for the constant of lunisolar precession
the following expression

p = 2K

[
L

(
1

2
+

3

4
e2− 3

4
s2
)

+
1

2
+

3

4
e20

]
cosε0, (14)

e being the eccentricity of the Moon’s orbit, e0 - the eccentricity of the solar orbit at
epoch, and s = sinc, with c - the inclination of the lunar orbit to the ecliptic. Since
n21a

3
1 =G(S+E+M)'GS, it follows

L =
M

S

(a1
a

)3
=

M

E+M

G(E+M)

GS

(a1
a

)3
=

µ

1 +µ

n2

n21
, (15)
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µ being the ratio of the mass of the Moon to that of the Earth and n - the sidereal
mean motion of the Moon. We can write

p = Hcosε0

(
P +

µ

1 +µ
Q

)
, (16)

where

H =
C−A
C

, (17)

P =
3n21
ω

(
1

2
+

3

4
e20

)
, (18)

Q =
3n2

ω

(
1

2
+

3

4
e2− 3

4
s2
)
. (19)

On the other hand, for the constant of nutation we have the expression

N =
KLs

α

(
1− 1

2
s2 +

3

2
e2
)

cosε0, (20)

where α = |dΩ/dt|, Ω being the longitude of the ascending node of the lunar orbit.
In the considered approximation for K and L, it follows

N = Hcosε0
µ

1 +µ
R, (21)

where

R =
3

2

n2s

ωα

(
1− 1

2
s2 +

3

2
e2
)
. (22)

For the constant of lunisolar precession and for the constant of nutation we shall
use the values obtained by Newcomb at the epoch 1900, namely pN = 5037.08′′ per
tropical century and N = 9.210′′. But applying the correction of 1.10′′ per tropical
century obtained by Fricke (1967) and the geodesic precession of 1.92′′ per tropical
century, it follows p= 5040.21′′ per Julian century. On the other hand, the obliquity
of the ecliptic to the equator at the epoch 1900 was ε0 = 23027′8.26′′. For the mean
motion of the Sun and the eccentricity of the orbit, we shall use the values of New-
comb’s theory, namely n1 = 628.307590 rad/cy, e0 = 0.01675104. For the Moon,
we shall use the values of Brown’s theory, namely the eccentricity e= 0.054900489,
the inclination of the orbit to the ecliptic c = 508′43.43′′, the sidereal mean motion
n = 8399.6850 rad/cy, dΩ/dt = −33.757146 rad/cy. We mention that the value n
used by Brown is very close to the improved value adopted in the IAU (1964) Sys-
tem (n= 8399.6848 rad/cy). We shall use for ω the value adopted in 1967 by IUGG,
namely ω = 230121.65297 rad/cy (value practically identic with the value adopted
in the IAU (2009) System), and for µ the value adopted by IAU (2009) System,
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µ= 1/81.300568. It follows

p = H

(
487126′′+ 86367667′′

µ

1 +µ

)
, (23)

N = H ·231315′′
µ

1 +µ
. (24)

At present, when the value of µ is sufficiently well known, H is determined from
the relation (23). Since p is determined in fact with no more than six significant
digits, it follows that H is obtained with the same number of significant digits. The
relation (24) is used to calculate N in the rigid Earth’s hypothesis. The comparison
with the value obtained from observations shows to what extent this assumption is
justified. Replacing the value of µ, we obtain p= 1536544′′H/cy, H = 0.00328022,
Nc = 9.219′′. It follows that the difference between the observed valueNo = 9.210′′,
adopted in the first system of astronomical constants and in the IAU (1964) System,
and the one calculated is No−Nc =−0.009′′.

The obtained results can be improved considering the expression G(S+E+
M) = n21a

3
1, instead of the approximate expression GS = n21a

3
1. Then U can be

written

U = −3

2
(C−A)GS

(
M

S

z2

ρ5
+
z21
ρ51

)
, (25)

where

GS =
GS(S+E+M)

S+E+M
=

n21a
3
1

1 + (E+M)/S
. (26)

On the other hand, M/S can be written as

M

S
=

M

E+M

G(E+M)

GS
=

µ

1 +µ

n2a3

GS
=

µ

1 +µ

n2a3

n21a
3
1

(
1 +

E+M

S

)
. (27)

It follows that only the expression of p is modified. It becomes

p = Hcosε0

(
P

1 + (E +M)/S
+

µ

1 +µ
Q

)
. (28)

Considering for (E +M)/S the value adopted in the IAU (1976) System,
namely 1/328900.0, we obtainH = 0.003280222. Therefore, because only six digits
are significant, it follows that also in this case we have H = 0.00328022 with a good
approximation. This value will be compared first of all with the value deduced from
the theory of precession and nutation developed by Woolard.
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4. THE DYNAMICAL FLATTENING DEDUCED FROM WOOLARD’S THEORY OF
PRECESSION AND NUTATION

Woolard’s theory is based on Newcomb’s theory of the Sun and on Brown’s
theory of the Moon. The Earth is considered rigid and A=B. The precession angle
is measured in the direct sense. From the series expansions that occur in Poisson’s
equations, for the constant of lunisolar precession and the constant of nutation follow
the expressions

p =
3GS(C−A)

ω3Carc1′′
(0.458887) +

3GM(C−A)

ω3Carc1′′
(3422.54′′arc1′′)3, (29)

N =
GM(C−A)

ω3Carc1′′
(3422.54′′arc1′′)3

|dΩ/dt|
(0.041166), (30)

where 3422.54′′ is the constant of Moon’s sine parallax, and ω3 is the component of
the Earth’s angular velocity of rotation along the polar principal axis of inertia. The
component ω3 practically coincides with ω.

The first expression can be written as

p = 0.458887kS + 0.455265kM , (31)

where

kS =
3(C−A)

C

S

S+E+M

n21
ωarc1′′

, (32)

kM =
3(C−A)

C

µ

1 +µ

1

F 3
2

n2

ωarc1′′
, (33)

F2 being the factor for the mean distance of the Moon. The value adopted in the IAU
(1964) System is F2 = 0.999093142. The second expression becomes

N = kM
0.041166

|dΩ/dt|
. (34)

Obviously, kS and kM are the common factors of the solar terms, respectively of the
lunar terms from the series that are involved in Poisson’s equations. Substituting the
values for n, n1, ω and (E+M)/S, we obtain

kS = 1061529.81′′H/cy, (35)

kM = 190237867′′
µ

1 +µ
H/cy (36)

and

p = H

(
487122.23′′+ 86608642′′

µ

1 +µ

)
. (37)
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Considering p= 5040.21′′/cy and µ= 1/81.300568, it follows

p = 1539468′′H/cy, (38)

H = 0.00327399, (39)

kS = 3475.4486′′/cy, (40)

kM = 7567.8320′′/cy. (41)

By comparing the expression (37) with the corresponding expression (23) from the
case of the elliptical motion of the Moon, an increase of the second term is observed.

On the other hand, taking |dΩ/dt|= 33.757146 rad/cy, it results N = 9.2288′′,
a value greater than the value N = 9.210′′.

We mention that the factors kS and kM can be calculated independently of H .
Indeed, if pS is the solar component of the constant of lunisolar precession and pM
is the lunar component, we have the relations

p = pS +pM , (42)
pM
pS

=
0.455265

0.458887

n2

F 3
2

µ

1 +µ

1 + (E+M)/S

n21
, (43)

from which result pS and pM , and therefore kS and kM . The values thus obtained
practically coincide with those obtained previously.

Differentiating the function H =H(p,µ) given by the relation (37), we obtain
for the variation δH the expression

δH = 6.49×10−7δp−1.79×10−1δµ. (44)

Therefore, the quadratic mean error σH is given by the relation

σ2H = 4.21×10−13σ2p + 3.20×10−2σ2µ. (45)

Considering σp = 0.1′′/cy and σµ = 10−7, we obtain σH = 6.7×10−8. Hence, from
Woolard’s theory it follows H = 0.00327399±7×10−8.

The value obtained for H allows to calculate the constant of lunisolar preces-
sion in the simplified case of the elliptical motion of the Moon. From the formula
p= 1536544′′H/cy, established in Section 3, it follows p= 5030.63′′/cy, therefore, a
value less than the value deduced from observations, the deviation being of the order
of 10′′ per Julian century. The values obtained for kS and kM differ from the ones
deduced by Woolard, because he first determined kM considering N = 9.210′′. He
obtained kM = 7552.4295′′/cy. Taking p= 5037.19′′/cy, he found kS = 3484.15′′/cy.
Hence, the common factor for the solar terms is greater, and the one for the lunar
terms is less in comparison with the corresponding more accurate values obtained
with the new values p and µ.

A new theory of the rotation of the Earth, based on Newcomb’s theory of the
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Sun and on Brown’s theory of the Moon was subsequently developed by Kinoshita
(1977). The Andoyer variables are adopted instead of Euler angles and the ecliptic
of date as a reference plane. The Earth is considered as rigid triaxial and H = [2C−
(A+B)]/2C. The author adopted Brown’s tables improved by Eckert et al. (1966).
This theory refines the theory of Woolard (1953). The effects due to the second order
perturbations are also investigated.

Taking p= 5040.21′′/cy and µ= 1/81.3007, Kinoshita (1977) obtained

H = 0.00327395, (46)

kS = 3475.3977′′/cy, (47)

kM = 7567.7216′′/cy, (48)

N = 9.2277′′. (49)

The value of H found by Kinoshita is close to the value obtained in this paper
in the case of Woolard’s theory. If in the expression of the constant of precession
obtained by Kinoshita we don’t consider the term that contains dΩ/dt (term of sec-
ond order), we get H = 0.00327397, a value even closer to H = 0.003399. We must
mention that, if the values n and n1 from Eckert et al. (1966) are adopted, the cal-
culated value for F2 (with nine significant digits) coincides with the value used by
Brown and adopted in the IAU (1964) System. We also mention that in a subsequent
work, realized by Kinoshita and Souchay (1990), the term in dΩ/dt is no longer
considered. We can conclude that in Brown’s theory the most probable value of the
dynamical flattening is H = 0.00327397±7×10−8.

Remark. If the expression given by Newcomb for the constant of luniso-
lar precession is reduced to the epoch 1900 and the values p = 5040.21′′/cy, µ =
1/81.300568 are used, it follows H = 0.00327384, a value close to the values ob-
tained in the theories of Woolard and Kinoshita. This shows that Hansen’s theory is
close to Brown’s theory.

5. VALUES OF THE DYNAMICAL FLATTENING
OBTAINED USING THE EPOCH J2000

In the work of Kinoshita and Souchay (1990), the theory of rotation of the rigid
Earth is based on the ELP 2000 theory for the motion of the Moon (Chapront et al.,
1983) and the VSOP 1982 theory (Bretagnon, 1982) for the motion of the planets.
The new epoch J2000, adopted in the IAU (1976) System of the astronomical con-
stants, is used and the calculations are carried to eight significant digits. For the new
epoch, the authors have obtained for the constant of lunisolar precession the value
p= 5040.9672′′/cy, using the constant of general precession p′ = 5029.0966′′/cy and
applying the correction δp′ = 11.8706′′/cy (Kinoshita and Souchay, 1990). This cor-



50 Ieronim MIHAILA, Alina Daniela VÎLCU 10

rection is due to the direct and indirect effect of the planets, to the geodesic preces-
sion, etc.

On the other hand,

p = 3H

(
M

M +E

n2

ω
M0 +

S

S+E+M

n21
ω
S0

)
cosε0, (50)

whereM0 = 0.49765621, S0 = 0.50021053. Using the values n= 8399.6847 rad/cy,
n1 = 628.307585 rad/cy and M/E = 1/81.30068, (E+M)/S = 1/328900.5 from
the paper of Kinoshita and Souchay (1990), we obtain p = 1539711.9′′H per Julian
century and H = 0.0032739678, a value that is slightly different from the value H =
0.0032739567 given in the work (Kinoshita and Souchay, 1990). We mention that
applying the same formula and the same numerical values, Williams (1994) obtained
the value H = 0.0032739677, practically an identical value to the one obtained in
our work.

But, if the calculations are carried to eight significant digits, the obtained value
should be corrected, because in the formula for p does not intervene in fact the mean
sidereal motion of the Sun, which contains the perturbation δn of the mean longi-
tude at epoch, but the corrected value n10 = n1− δn = 628.306623 rad/cy, where
δn = 0.000962 rad/cy (Bretagnon, 1982). This is the mean motion which satis-
fies Kepler’s third law. By introducing the value n10 in the relation (50), it follows
p= 1539710.4′′H/cy andH = 0.0032739708, a value slightly greater than the previ-
ously calculated value H = 0.0032739678, the deviation being ∆H = 0.00000030.
Therefore, the seventh significant digit is modified. On the other hand, we mention
that once with the more precise determination of the constant of lunisolar precession
a more accurate value of the dynamical flattening will be obtained.

In the last two decades Lunar Laser Ranging (LLR), Very Long Baseline Inter-
ferometry (VLBI) and the study of proper motions of the stars (see, e.g., the important
paper elaborated by Williams (1994) have led to the idea of reduction of the constant
of general precession. Williams (1994) adopted for the constant of general preces-
sion the value 5028.77′′/cy at J2000, a value 0.3266′′/cy less than the value from IAU
(1976) System. He obtained the correction δp′ = 11.8869′′/cy, p = 5040.6569′′/cy
and H = 0.0032737634.

Adopting the same value for the constant of general precession, namely p′ =
5028.77′′/cy, and applying the correction δp′ = 11.8745′′/cy, Souchay and Kinoshita
(1996) obtained for the constant of lunisolar precession the value p= 5040.6445′′/cy.
Just like in the work of Kinoshita and Souchay (1990), the theory ELP 2000 for the
motion of the Moon (Chapront et al., 1983) and the theory VSOP 1982 (Bretagnon,
1982) for the motion of the planets are used. The values for n and n1 are those
from the previous work. But for masses were adopted the values from the ephemeris
DE 245 (Newhall et al., 1993), namely M/E = 1/81.30059 and (E +M)/S =
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1/328900.56. For the terms M0 and S0 were obtained the values M0 = 0.49630353
and S0 = 0.50021054. We observe that in the formula (50) the value which inter-
venes is not the mentioned M0 value, but M0/F

3
2 = 0.49765634. It follows then

p = 1539713.5′′H/cy and the value H = 0.0032737548 given in Souchay and Ki-
noshita (1996). We must also mention that the value F2 = 0.999093142 calculated
for 1900 and adopted in the IAU (1964) System, the same as the one deduced by
Brown, is valid also for J2000 and for the new values n = 1732559343.18′′/cy and
n1 = 129597742.26′′/cy, used by Souchay and Kinoshita.

Indeed, replacing in the series

F2 = 1− 1

6
m2 +

1

3
m3 +

407

2304
m4− 67

288
m5 (51)

− 45293

41472
m6− 8761

6912
m7− 4967441

7962624
m8 +

14829273

39813120
m9 + ... (52)

the value

m =
n1

n−n1
= 0.080848937483, (53)

we obtain F2 = 0.9990931418 ' 0.999093142. Hence, F2(1900) = F2(2000). As
it has been previously shown, to obtain eight significant digits it is necessary that
the mean sidereal motion of the Sun n1 = 129597742.26′′/cy =628.307585 rad/cy
be replaced by n10 = 628.306623 rad/cy. It follows then p = 1539712.5′′H/cy and
H = 0.0032737569. We also mention that Bretagnon et al. (1997), using the same
value for the constant of general precession, obtained H = 0.0032737671, a value
close to that obtained by Williams (H = 0.0032737634), respectively Souchay and
Kinoshita (H = 0.0032737569). By comparing the three values, we deduce H =
0.00327376±2×10−8, if we limit ourselves to six significant digits and adopt σp =
0.01′′/cy, σµ = 10−7.

Subsequently, the value of the constant of general precession was slightly in-
creased. Thus, in the IAU 2000 precession - nutation model (Mathews et al., 2002)
was adopted the value 5028.7962′′/cy. It was obtained H = 0.0032737949. In the
work elaborated by Capitaine et al. (2003) is considered the same value for the con-
stant of general precession and practically the same value for the dynamical flatten-
ing is obtained, namely H = 0.0032737945. On the other hand, Fukushima (2003)
estimated the constant of general precession at J2000 as (5028.7955± 0.0003)′′/cy
and adopted for the geodesic precession the value pg = (1.9196± 0.0003)′′/cy. He
obtained H = 0.0032737804±3×10−10.

If the correction δp′ = 11.8745′′/cy found by Souchay and Kinoshita (1996)
is applied to the value of the constant of general precession p′ = 5028.7962′′/cy,
the value p = 5040.6707′′/cy for the constant of lunisolar precession is obtained.
Using the formula previously established, namely p = 1539712.5′′H/cy, it follows
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H = 0.0032737740, a value greater than the value obtained before. Similarly, if
the value of the correction δp′ = 11.8869/cy obtained by Williams (1994) is applied
and the same formula is used, it is obtained H = 0.0032737820. It results that the
transition from the value 5028.7700′′/cy to the new values led to a slight increase of
the dynamical flattening.

In the new IAU (2009) System of astronomical constants were adopted for pre-
cession the values proposed by Working Group on Precession and the Ecliptic (Hilton
et al., 2006), namely 5028.796195′′ per Julian century for the rate of general preces-
sion in longitude and 5038.481507′′ per Julian century for the rate of general pre-
cession of the equator in longitude. For more clarity, the denominations of lunisolar
precession and planetary precession were replaced by precession of the equator and
precession of the ecliptic, proposed by Capitaine et al. (2003). Because the adopted
value for constant of general precession practically coincides with the value adopted
in the IAU 2000 precession-nutation model, and in this model the dynamical flatten-
ing is obtained with great accuracy, one can consider that the valueH = 0.003273795
is the most probable value of the dynamical flattening, if the value is limited to seven
significant digits. This value is close to the value H = 0.00327378 discussed before.

We remark that the value of the dynamical flattening derived from astronomi-
cal observations is greater than the value deduced from geophysical considerations.
In the paper of Dehant and Capitaine (1997), dedicated to a comparison between
the two values, one considers that the difference is probably due to the fact that the
hypothesis regarding the hydrostatic equilibrium of the Earth is not fulfilled. In the
paper is presented the value H = 0.003240 obtained for the Preliminary Reference
Earth Model (PREM), elaborated by Dziewonski and Anderson. In this model, con-
sidering the Earth in hydrostatic equilibrium, one obtains the density and afterwards
the principal moments of inertia. Similarly, from the value of J2, in the hypothe-
sis of hydrostatic equilibrium, one can compute the principal moments of inertia,
and therefore the dynamical flattening. One obtains H = 0.003273. Evidently, the
astronomical determination of the flattening is more precise.

6. ON THE VARIATION OF THE DYNAMICAL FLATTENING

In the last decades it was established that the second degree zonal harmonic
coefficient J2 of the geopotential presents secular and periodic variations. Because
Ma2eJ2 = C − (A+B)/2 = HC (M being the mass of the Earth and ae its equa-
torial radius), it results that H is also variable. On the other hand, J2 = −

√
5 C20,

C20 being the normalized coefficient of degree 2 and order 0 of the geopotential.
Therefore H =−

√
5Ma2eC20/C.

The variations of C20, i.e. of J2 are obtained from orbit determination of arti-
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ficial satellites. Bourda and Capitaine (2004), analyzing the C20 data obtained from
positioning of satellites between 1985 and 2002, estimated the secular variation ofH
as dH/dt=−7.4×10−9/cy and therefore dJ2/dt=−2.5×10−9/cy (the epoch be-
ing J2000). On the other hand, the periodic variations are of the order of 10−10. In the
IAU 2009 System of astronomical constants was adopted the value dJ2/dt=−3.0×
10−9/cy. This value is concordant with the value dJ2/dt= (−3.4±0.6)×10−9/cy,
obtained by Morrison and Stephenson (1997) from eclipse data over two millen-
nia. Similar results were also obtained in the paper of Burša et al. (2008). In this
paper is studied the influence of the variability of J2 on the dynamical flattening.
It is obtained dH/dt = −8.45× 10−9/cy. Adopting dH/dt = −7.9× 10−9/cy and
∆H =−7.9×10−9∆t, we obtain that at the epoch when Hipparchus discovered the
precession (150 B.C.) ∆H was 1.7× 10−7 and the value of the dynamical flattening
was H = 0.00327379 + 1.7×10−7 = 0.00327396.

7. CONCLUSIONS

From the analysis made in this paper, it follows that in the approximation
of the homogeneous Earth the dynamical flattening has the greatest value, namely
H = f −f2/2 = 0.00334720, f being the geometrical flattening. In the approxima-
tion of the elliptical motion of the Moon, using the constant of lunisolar precession
p = 5040.21′′ per Julian century, deduced from Newcomb’s constant of lunisolar
precession at epoch 1900, and the ratio of the mass of the Moon to that of the Earth
µ= 1/81.300568, adopted in the IAU (2009) System of astronomical constants, one
obtainsH = 0.00328022. In the case of Woolard’s theory of precession and nutation,
based on Newcomb’s theory of the Sun and on Brown’s theory of the Moon, using
the same values for p and µ, we obtained H = 0.00327399± 7× 10−8. The value
found is close to the value H = 0.00327395 obtained by Kinoshita (1977), who used
Brown’s theory improved by Eckert et al. (1966).

Once with the adoption of the new epoch J2000 in the IAU (1976) System and
of the constant of general precession 5029.0966′′ per Julian century, the value of H
was improved. Our analysis revealed that if the calculations are carried out to eight
significant digits, then it is necessary that the mean sidereal motion of the Sun be
corrected by the perturbation of the mean longitude at epoch. The application of this
correction leads to the change of the seventh significant digit from the value of the
dynamical flattening, more exactly to a slight increase of H . Thus, for example, the
value H = 0.0032739678, obtained by applying the formula (50) to the theory of
Kinoshita and Souchay (1990), becomes H = 0.0032739708. Moreover, as it was
mentioned in Section 5, the application of this correction leads to obtaining the for-
mula p = 1539712.5′′H per Julian century, which allows a good determination for
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H . In the last decades, different values for the constant of general precession have
been deduced. For all these values, we have slightly different values of the dynam-
ical flattening. On the other hand, it is necessary to introduce the correction due to
the perturbation of the mean longitude at epoch. Analyzing the values presented in
Section 5 and taking into account the quadratic mean errors corresponding to the
constant of lunisolar precession and to the ratio of the mass of the Moon to that of
the Earth, namely σp = 0.001′′/cy and σµ = 10−9, one can consider that the value
H = 0.003273795± 1× 10−9 is sufficiently accurate to be used in order to deter-
mine the moments of inertia of the Earth and allows the determination with a good
approximation of the factors kS and kM involved in the series of Poisson’s equations.
This value was adopted by IAU (Petit and Luzum, 2010).
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