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Abstract. The EUV imaging telescope onboard the Transition Region And Coronal
Explorer (TRACE) spacecraft provided observations with high spatial resolution and
unprecedented time cadence of spatial oscillations of solar coronal loops. Current theo-
retical models attempt to explain the excitation mechanism, rapid damping and selectiv-
ity of these oscillations. The theoretical model presented here simulates the interaction
between a magnetic slab and a finite width shock wave generated by a nearby explosive
flare event. The slab has an exponential density stratification, with variable hydrostatic
scale height. As a key feature, the subsequent observed damping is considered to occur
due to the opposition of the external magnetized medium to the perpendicular propa-
gation of a medium/low velocity disturbance. Comparison of the theoretical damping
results of the model with observational data gives an excellent agreement.
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1. INTRODUCTION

High resolution observations supplied by TRACE/EUV in the 171Å and 195Å
filters show spatial displacement of solar coronal loops [1, 2, 11, 20]. They are
dubbed ”transversal modes”, as it is observed that the plasma inside the loop moves
as a whole perpendicular to the equilibrium magnetic field which is aligned with
the symmetry axis of magnetic structures. These oscillations are considered to be
triggered by massive nearby releases of energy, such as flares, CMEs or filament
destabilization. Based even on visual inspection only ∗, it is clear that the loops’ foot
points are not displaced considerably and that the oscillations damp on time scales
comparable to the loops’ oscillations period. Another puzzling observational fact is
that only a small percent of the flares show oscillating loops [2].

The theoretical models developed in the last few years attempted to give valid
explanations for the value of periods and damping times and also to explain the ex-
citation mechanism and the selectivity of loops excitation. Several theoretical mod-

∗Full movies of the events are available, by courtesy of [20], at http://vestige.lmsal.com/
TRACE/POD/TRACEoscillations.html.
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els were proposed to explain the excitation and damping of oscillations, including
viscous damping with anomalous low Reynolds number [11], damping due to phase
mixing [16], destabilization of magnetic sources in the photosphere and damping due
to subsequent relaxation of magnetic field lines [19], damping due to foot point leak-
age of Alfvén waves [8], damping due to resonant absorption [17], viscous damping
due sub resolution scales [15], excitation and damping due to dispersive nature of the
magnetized medium inside and outside the loop [21], excitation due to vortex shed-
ding [13]. The common aspects of these models are the association of a flare event
with the excitation and the identification of the oscillation mode as the fast kink mode
of a magnetic flux tube [11]. Once the oscillations of loops became observable and
this motion was quantified a new branch of solar physics called coronal magneto-
seismology became possible [4, 5, 9, 7, 11, 3, 12, 10]. This remote diagnostic tool
deepened our understanding of the dynamics of the solar corona, its stability and ther-
mal state. New observations made recently by Hinode and SDO will revolutionize
almost the entire solar physics.

One of the fundamental ideas employed by our study resides in the consider-
ation of the excitation mechanism to be due to a shock wave travelling towards the
loop. The shock itself can be generated by a nearby flare. The observed geometry of
the incident wave-loop system (i.e. the external disturbance travels perpendicular to
the external magnetic field) drives us to believe that the shock wave is a fast magneto
acoustic shock. Following the impact, the loop begins to oscillate and the reported
maximum velocity amplitude is of the order of 10 km/s [2, 20]. The damping of the
induced oscillations occurs as a result of the opposition of the external magnetized
medium to a transversal slowly propagating oscillation. The analytical treatment is
carried out without using the mathematical constraint that the mode might be a kink
mode. This approach is also supported by latest modelling of observational data [24].
For our study the only condition applied is that the solution satisfies the observed
boundary condition of fixed foot points. In Section 2 we develop the mathematical
treatment necessary for our study, while in Section 3 the results are presented and
discussed. Conclusions follow in Section 4.

2. MATHEMATICAL APPROACH

The configuration under analysis consists of a magnetic slab approximating
the line tied coronal loop. In a coordinate system fixed to the loop, the structure
is aligned with its constant equilibrium magnetic field B0 and the −ẑ axis (Fig. 1).
The internal and external magnetic fields are of the same order of magnitude and
if they not parallel, they are at least coplanar in the yOz plane. The shock wave,
moving parallel to the x axis, hits the loop and exerts a force Fsh. The response of
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the external medium to the oscillations of the loop is given through a force of the
form Fext =−αv where α is a constant and v is the velocity of the oscillating loop.

Fig. 1 – Geometrical configuration of the model.

In order to simplify our analysis we will use the β → 0 approximation which
still preserves the important physics involved in the problem.

Observations of transversal displacements place the value of the maximum ve-
locity amplitude two orders of magnitude smaller than the local Alfvén speed. In the
following mathematical treatment this observational fact is translated into the use of
linear magnetohydrodynamics (MHD) theory.

The set of linear and ideal MHD equations, in the β→ 0 approximation is given
by

∂ρ

∂t
+∇· (ρ0(z)v) = 0,

ρ0(z)
∂v
∂t

=
1

µ0
(∇×B)×B0+ρg+Fsh−αv,

∂B
∂t

=∇× (v×B0),

∇·B = 0,

(1)

where ρ0(z) = ρ00f(z) is the equilibrium density of the internal medium, ρ00 is the
density in the apex of the loop, g = gẑ is the gravitational acceleration, and ρ,v,B
denote the perturbations of the pressure, density, velocity and magnetic field.

We assume a two-dimensional dynamics, neglecting changes in the y direction.
We can solve the system of equations for the perturbed velocities, vx = v · x̂ and
vz = v · ẑ, and it follows that the equations describing the dynamics of the loop are

f(z)
∂2vx
∂t2

= v2A0

∂2vx
∂z2

+
1

ρ00

∂Fsh

∂t
− α

ρ00

∂vx
∂t

, (2)
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f(z)
∂2vz
∂t2

=
α

ρ00

∂vz
∂t

−gf(z)
∂vz
∂z

−gvz
df(z)

dz
, (3)

where v2A0 = B2
0/(µ0ρ00) is the Alfvén speed measured in the apex of the coronal

loop.
We tackle the problem as it would consist of two superimposed independent

processes, discussed below.

1. Longitudinal wave propagation: this part of the process is considered to be
known and is modelled as a decaying propagating plane wave of the form

vz = v̂ze
ı(ωzt+kzz), (4)

where ωz ∈R, kz ∈C. Our choice is based on the observational fact that longi-
tudinal oscillations are seen to damp on a very short spatial scale [6]. This scale
is much shorter than the typical spatial scale arising from density stratification,
thus making it possible for us to use Fourier analysis to describe the longitudinal
oscillation process.

2. Transversal wave propagation: we wish to discuss and consider this phenomenon
as unknown and from now we will model it as a time decaying oscillation

vx = v̂x(z)e
ıωt, (5)

where

ω = ωR+ ıωI . (6)

The values for ωR are given by the observed oscillation periods. In the nu-
merical calculations, when the time evolution of each loop is considered, ωR

will be replaced by 2π/P , where P is the reported oscillations period of the
loop. A non-zero complex frequency, ωI , allows for a numerical treatment of
the observed temporal decay of oscillations.

If Eqs (2) and (3) are analyzed, it might be argued that the two velocities are
not independent as they both depend on α. However, if starting from Eq. (3) and im-
posing that vz has accepted observational values for longitudinal propagation, the α
coefficient is almost constant (Fig. 2) and is not responsible for an effective coupling
between the longitudinal and transversal oscillations.

Using Eqs (4) and (5), we can solve Eq. (3) for α. Introducing this result back
into Eq. (2) we obtain the evolutionary equation for v̂x as
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Fig. 2 – Variation of the longitudinal velocity as a function of the α coefficient. The interval in red
maps the values of α that lead to longitudinal velocities consistent with observations.

f(z)ω2v̂x+v2A0

d2v̂x
dz2

=− 1

ρ00

∂Fsh

∂t
e−ıωt+

ω

ωz
v̂x

[
−ω2

zf(z)+ ikzgf(z)+g
df(z)

dz

]
,

(7)
This equation can be separated into its real and imaginary part, where the real

part can be given as

v2A0

dv̂x
dz2

+ v̂x

[
f(z)

(
ω2
R−ω2

I +ωRωz+g
ωR

ωz
kz

)
− ωR

ωz
g
df(z)

dz

]
=− 1

ρ00
∂Fsh
∂t eωI t cos(ωRt).

(8)

The analytical form of Fsh must account for the short temporal interaction and the
localized spatial impact. We assume that the shock wave hits both feet of the loop
at the same time (i.e. there is no phase delay). These suppositions can be modelled
by using a Heaviside step function for the time dependence and a Gaussian centered
on the point of impact for the space dependence of the incoming driver, therefore
Fsh(z, t) will be considered to be of the form

Fsh(z, t) = F (z, t)x̂,

F (z, t) = F0H(τ − t)
1

a
√
π

[
e−(z−z0)2/a2 +e−(z+z0)2/a2

]
,

(9)

where F0 is the energy per appropriate length scale of the fast MHD shock wave,
given as F0 = 1/2ρec(v

2
Ae+ c2Se)/a , c is a constant used to determine the amount
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of energy needed to obtain the observed displacements, τ is the temporal duration
of the interaction, a is the width of the spatial shock and z0 and −z0 are the impact
points along the two sides of the loop. Other variables are taken as ρe = d · ρ00,
cSe = 105m/s, vAe = vA0

√
(1/d), with d being the density filling factor of the loop.

3. RESULTS AND DISCUSSION

The analysis is restricted to only one half of the loop, namely for z ∈ [0,L/2],
and symmetry is assumed for the other half. The symmetry assumption of our model
is valid since the α coefficient is constant and there is no temporal delay between the
interaction of the shock wave with the two feet of the loop.

Having in mind this simplification, Eq. (9) is modified as

F (z, t) = F0H(τ − t)
1

2a
√
π
e−(z−z0)2/a2 . (10)

The density profile described by the function f(z) is taken to be an exponential func-
tion of z, decaying towards the apex. This choice of the density dependence with
height was earlier employed by many authors [22, 18] and is based on the study
of 30 loops observed by SoHO/EIT [1]. [18] include a sinusoidal function in the
argument of the exponent, to ensure symmetry in a cylindrical configuration. This
sinusoidal inclusion is, however, not applicable for the slab configuration used in this
model. In particular, the variation of the equilibrium density with height becomes

fn(z) = enz/L. (11)

where the dimensionless number n is a parameter standing for variable scale height
along the loop.

Solving Eq. (8), the spatial dependence of the transversal velocity is obtained
to be of the form

v̂x = T0(t)

i=12∑
i=1

Ti(z), (12)

where Ti(z) are complicated function containing combinations of Bessel functions
(see Appendix A).

The next step of our analysis is to determine the temporal evolution of the
displacement of the apex of the loop, for different impact points along the loop and
considering different values for n. For example, for loopi, (i=1 . . .12), we set values
for z0 and n (for example z0 = L/8 and n= 2). Next, we fit the values for c and ωI

in such a way that
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1. the resulting apex displacement is equal to the observed value, i.e. to 0.8 Mm
for loop 1 (see observational data collected in Table 1).

2. the displacement after td, i.e. after 1200 seconds, corresponds to an e-folding
decay of the maximum amplitude.

From the large number of oscillations discussed in the literature, we selected a
few events (presented in Table 1) satisfying a few imposed criteria, e.g. the flare had
to be near the loop, but not localized at one of its foot points or underneath it. We
also neglected those reported oscillations where uncertainties in observational data
were large.

Calculations are performed for d = 0.1. Using numerical simulations first we
obtained that a variation of d in the interval (0,1] does not have any significant effect
on the obtained results and so, there is no relation between the observed displacement
and density ratio that can be used in the seismological investigation of the present
study.

This simple algorithm was applied to loops 1− 7 and 12, for which all the
needed data can be extracted from observations. For each loop, c and ωI were fitted
for combinations of the parameters n and z0, as seen in Tables 2-9. At this point
we would wish to discuss one of the details of the calculations. Initially, the sign
of ωI was not fixed (i.e. to positive or negative) and it was found that, within the
framework of this model and in order to obtain the observational damping time, ωI

had to be negative. Combining this fact with equation 5 one would formally obtain
an exponential growth and not a decay. But in the particular case of this model, the
superposition of all the effects, the −αv term and the shock term do not allow for a
growth instability to occur. We redid all the calculations with ωI positive and only at
this point we obtained a behavior that leads to instability. We propose that this may
be explained if one looks carefully at the right hand side of Eq. 8. The driving term
is multiplied by the time exponential eωI t. If the values of ωI were positive, this term
would grow exponentially leading to an instability.

For every loop, we plotted the displacement of the loop apex as a function of
time. The agreement with observational data [2, 20] is very good (see Figures 4
and 6 for theoretical predictions of time evolutions of loops 14 and 6 respectively
and Figures 3 [2] and 5 [2] for their observed evolution).

The time evolution of loop 12 is presented in Fig. 8 and it is compared to the
observational fit [23], Fig. 7.

The following type of analysis is done with calibration purposes. We will set
the values for z0 and n at L/8 and 2 respectively. For these fixed parameters we
retrieve the corresponding optimum values for c and ωI from one of the Tables 2-9.
At this point we allow z0 and n to vary again to see in what way this variation affects
the optimum prescribed theoretical behavior.
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Table 1

The observational and computed data for 12 loops

Only data for loops 1-7 and 12 were complete, so for these loops our analysis is accurate

A denotes the maximum observed amplitude of oscillations

L[Mm] P[s] td[s] A[Mm] vA[km/s]
1a 168 261 1200 0.8 2600
2b 72 265 300 2 2600
3c 174 316 500 6 2600
4d 204 277 400 4 2500
5e 162 272 849 5 3000
6f 258 435 600 0.7 2500
7g 146 396 400 1.8 3500
8h 258 435 600 - 839
9i 166 143 200 - 1640
10j 406 423 800 - 1360
11k 192 185 200 - 1470
12l 340 630 1000 4 2000

1a previously described in [2, 20],
triggered by a M4.6 flare, event on 14 July 1998,

12:45 UT, their loop 1a.
2b (idem 1a), their loop 1b.
3c (idem 1a), their loop 1d.
4d (idem 1a), their loop 1f.
5e (idem 1a), their loop 1g.

6f previously described by [2, 20],
event on 4 Jul 1999, 08.33 UT, triggered by a C4.6

flare, their loop 4a.
7g previously described by [2, 20],

event on 15 Jun 2001, 06:35 UT, triggered by a

C3.8 flare, their loop 17a.
8h previously described by [14],
event on 4 Jul 1999, their loop 7.
9i previously described by [14],

event on 25 Oct 1999, their loop 8.
10j previously described by [14],

event on 21 Mar 2001, their loop 9.
11k previously described by [14],

event on 15 May 2001, their loop 10.
12l previously described by [23],

event on 27 Jun 2007, triggered by a C1.3 flare.

Table 2

Numerical data for loop 1, with ωI in units of s−1

z0 = 0 z0 = L/8 z0 = L/4

n= 0
c = 0.498 c = 0.294 c = 0.408

ωI =−6.65 ·10−4 ωI =−6.66 ·10−4 ωI =−6.66 ·10−4

n= 1
c = 0.385 c = 0.222 c = 0.298

ωI =−6.65 ·10−4 ωI =−6.65 ·10−4 ωI =−6.65 ·10−4

n= 2
c = 0.2275 c = 0.127 c = 0.164

ωI =−6.65 ·10−4 ωI =−6.65 ·10−4 ωI =−6.65 ·10−4
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Table 3

Numerical data for loop 2, with ωI in units of s−1

z0 = 0 z0 = L/8 z0 = L/4

n= 0
c = 5.85 c = 3.76 c = 5.58

ωI =−20.25 ·10−4 ωI =−20.25 ·10−4 ωI =−20.28 ·10−4

n= 1
c = 5.78 c = 3.7 c = 5.45

ωI =−20.28 ·10−4 ωI =−20.28 ·10−4 ωI =−20.28 ·10−4

n= 2
c = 5.65 c = 3.62 c = 5.3

ωI =−20.23 ·10−4 ωI =−20.23 ·10−4 ωI =−20.23 ·10−4

Table 4

Numerical data for loop 3, with ωI in units of s−1

z0 = 0 z0 = L/8 z0 = L/4

n= 0
c = 3.155 c = 1.91 c = 2.685

ωI =−17.2 ·10−4 ωI =−17.2 ·10−4 ωI =−17.2 ·10−4

n= 1
c = 2.75 c = 1.632 c = 2.25

ωI =−17.2 ·10−4 ωI =−17.2 ·10−4 ωI =−17.2 ·10−4

n= 2
c = 2.195 c = 1.27 c = 1.702

ωI =−17.2 ·10−4 ωI =−17.2 ·10−4 ωI =−17.2 ·10−4

Table 5

Numerical data for loop 4, with ωI in units of s−1

z0 = 0 z0 = L/8 z0 = L/4

n= 0
c = 0.61 c = 0.34 c = 0.453

ωI =−23.45 ·10−4 ωI =−23.45 ·10−4 ωI =−23.45 ·10−4

n= 1
c = 0.113 c = 0.0602 c = 0.077

ωI =−23.45 ·10−4 ωI =−23.42 ·10−4 ωI =−23.42 ·10−4

n= 2
c = 1.215 c = 0.608 c = 0.733

ωI =−23.42 ·10−4 ωI =−23.42 ·10−4 ωI =−23.42 ·10−4

Table 6

Numerical data for loop 5, with ωI in units of s−1

z0 = 0 z0 = L/8 z0 = L/4

n= 0
c = 4.37 c = 3.225 c = 3.83

ωI =−7.96 ·10−4 ωI =−7.96 ·10−4 ωI =−7.96 ·10−4

n= 1
c = 3.985 c = 2.415 c = 3.375

ωI =−7.96 ·10−4 ωI =−7.96 ·10−4 ωI =−7.96 ·10−4

n= 2
c = 3.48 c = 2.065 c = 2.825

ωI =−7.97 ·10−4 ωI =−7.97 ·10−4 ωI =−7.96 ·10−4
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Table 7

Numerical data for loop 6, with ωI in units of s−1

z0 = 0 z0 = L/8 z0 = L/4

n= 0
c = 0.0682 c = 0.03908 c = 0.053

ωI =−11.33 ·10−4 ωI =−11.33 ·10−4 ωI =−11.33 ·10−4

n= 1
c = 0.037 c = 0.205 c = 0.0269

ωI =−11.33 ·10−4 ωI =−11.33 ·10−4 ωI =−11.33 ·10−4

n= 2
c = 0.00844 c = 0.00445 c = 0.00557

ωI =−11.33 ·10−4 ωI =−11.33 ·10−4 ωI =−11.33 ·10−4

Table 8

Numerical data for loop 7, with ωI in units of s−1

z0 = 0 z0 = L/8 z0 = L/4

n= 0
c = 4.048 c = 2.626 c = 3.932

ωI =−24.95 ·10−4 ωI =−24.95 ·10−4 ωI =−24.95 ·10−4

n= 1
c = 4.04 c = 2.6215 c = 3.922

ωI =−24.95 ·10−4 ωI =−24.95 ·10−4 ωI =−24.95 ·10−4

n= 2
c = 4.033 c = 2.615 c = 3.912

ωI =−24.95 ·10−4 ωI =−24.95 ·10−4 ωI =−24.95 ·10−4

Table 9

Numerical data for loop 12, with ωI in units of s−1

z0 = 0 z0 = L/8 z0 = L/4

n= 0
c = 0.248 c = 0.1216 c = 0.15

ωI =−8.41 ·10−4 ωI =−8.41 ·10−4 ωI =−8.41 ·10−4

n= 1
c = 0.453 c = 0.203 c = 0.232

ωI =−8.41 ·10−4 ωI =−8.42 ·10−4 ωI =−8.41 ·10−4

n= 2
c = 0.851 c = 0.3245 c = 0.3335

ωI =−8.42 ·10−4 ωI =−8.41 ·10−4 ωI =−8.41 ·10−4
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Fig. 3 – Amplitude of the apex displacement for loop 1 deduced by fitting observational points with a
damped oscillation.

Fig. 4 – Amplitude of the apex displacement of loop 1 according to our model, with n= 2 and
z0 = L/8.

If all parameters are held fixed and the values for c and ωI are those fitted for
n = 2 and z0 = L/8, then the variation of the apex displacement as a function of n
has the profile presented in Figure 9, in the case of loop 6. The sharp peak at n = 2
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Fig. 5 – Amplitude of the apex displacement for loop 6 deduced by fitting observational points
with a damped oscillation.

Fig. 6 – Amplitude of the apex displacement for loop 6 according to our model,
with n= 2 and z0 = L/8.
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Fig. 7 – Amplitude of the apex displacement for loop 12 deduced by fitting observational points
with a damped oscillation.

Fig. 8 – Amplitude of the apex displacement of loop 12 according to our model, with n= 2 and
z0 = L/8.

is explained because the free parameters were fitted such that n = 2 is the optimum
case. It can also be seen that for a specific value of n the amplitude can change sign,
i.e. there is a certain combination of parameters such that the variation of n leads to
a change in the polarization of the oscillation.

In the case of loop 1 we keep all parameters fixed and the values for c and ωI

are those fitted for n= 2 and z0 = L/8. Now the variation of the apex displacement
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Fig. 9 – Amplitude of the apex displacement of loop 6 as a function of n.

as a function of z0 has the profile presented in Figure 10.

Fig. 10 – Amplitude of the apex displacement of loop 1 as a function of z0.

Similarly, if all parameters are held fixed and the values for c and ωI are those
fitted for n= 2 and z0 = L/8, then for the particular case of loop 12 the variation of
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the apex displacement as a function of a has the profile presented in Figure 11.

Fig. 11 – Amplitude of the apex displacement of loop 12, as a function of time, with a as a parameter.

It can be seen that the result shows significant changes only if the interaction
width is taken to be very large, i.e. of the order of 108 m. Obviously such a large
value of a is not realistic, therefore, we consider that for a wide acceptable interval
of a, the width of the interaction does not affect the results.

We also tried to correlate the increase/decrease in the energy needed to displace
the loop (within the framework of our model) as a function of the loop length. At
the moment this correlation is impossible to establish given the insufficient number
or events taken into consideration. For example, if z0 = L/8 we calculated

∆= 100
c1− c0
c0

, (13)

to be the percentage value of energy increase/decrease needed to displace the loop
for n = 0 (through c0) and for n = 1 (through c1). We plotted the quantity ∆ as a
function of loop length L (see Figure 12). Even though an accurate dependency ∆
vs. L cannot be found, at least we can remark that it is generally more efficient to
displace a loop with n= 1 than one with n= 0.

If all parameters are held fixed and the values for c and ωI are those fitted for
n=2 and z0 =L/8, then the variation of the apex displacement as a function of time,
with z0 as a parameter has the profile presented in Figure 15, for loop 4. Even if the
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Fig. 12 – Variation with loop length of the supplemental energy needed to displace a loop
when n goes from 0 to 1.

amplitude at a given time and position is the same for a finite interval ωI (Fig. 13),
only values fitted in tables 2-9 lead to observed damping times.

Fig. 13 – Variation of the displacement amplitude as a function of ωI .
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Fig. 14 – Amplitude of the apex displacement for loop 12 deduced by fitting observational points with
a damped oscillation.

Fig. 15 – Amplitude of the apex displacement for loop 12 according to our model, with n= 2 and
z0 = L/8.
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4. CONCLUSIONS

Our study attempts to present an analytical approach to explain the complicated
problem of excitation and damping of transversal coronal loop oscillations. Using
observational data we have shown that our proposed model accurately describes the
observed behavior of coronal loops following the impact with a shock wave.

The two key points put forward by our model are the analytical shape of the
driving force, given by Eq. (9) and the inclusion of a force to account for the oppo-
sition of the external magnetized medium to low velocity transversal disturbances.
Values obtained for the imaginary part of the frequency, ωI , representing the damp-
ing rate of the oscillating loops are within the same order of magnitude for all the
analyzed loops, as seen in Tables 2-9. In light of these characteristics of our model
we propose that the damping of transversal oscillations is a global characteristic of
the solar corona and not something particular to one loop.

The energy transmission coefficient, c, however, does not present a well defined
behavior indicating that a much more complex mechanism for energy absorption and
conversion might be at work.

We have also shown that the behavior of the oscillations does not change sig-
nificantly due to the variable density contrast or a varying width of spatial interaction.
For certain values of n the oscillations may change polarization. However, these val-
ues are rather high and it is questionable whether an observational proof of change
in polarization may be obtained.

Future work will address the more realistic case when α is not a global constant,
but depends locally on the magnetic properties of the external medium.

APPENDIX A. SOLUTION TO THE EVOLUTION EQUATION (8)

The analytical solution to the evolution Eq. (8) is Eq. (12), where the following
notations were used

A=
2
√
L

nvA0
√
ωz

√
Lωzω2

I −gωR(1−kzL)+LωzωR(ωz+ωR) = const., (1)

B =
1

4alnv2A0

cdetωILP
√
π(c2Se+v2Ae)cos tωR =B(t), (2)

M = J1(A) ·Y0(en/4A)−J0(e
n/4) ·Y1(A), (3)

IJ(z
′) = exp

{
−(−z0+z′)2

a2

}
J0

(
Aenz

′/(2L)
)
, (4)
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IY (z
′) = exp

{
−(−z0+z′)2

a2

}
Y0

(
Aenz

′/(2L)
)
, (5)

T0(t) =
B(t)

M
, (6)

T1(z) = J0

(
enz/(2L)A

)
Y0

(
en/4A

)
Y1 (A)

∫ 0

1
IJ(z

′)dz′, (7)

T2(z) =−J0

(
en/4A

)
Y0

(
enz/(2L)A

)
Y1 (A)

∫ 0

1
IJ(z

′)dz′, (8)

T3(z) = J1 (A)Y0

(
en/4A

)
Y0

(
enz/(2L)A

)∫ L/2

1
IJ(z

′)dz′, (9)

T4(z) =−J0

(
enz/(2L)A

)
Y0

(
en/4A

)
Y1 (A)

∫ L/2

1
IJ(z

′)dz′, (10)

T5(z) =−J1 (A)Y0

(
en/4A

)
Y0

(
enz/(2L)A

)∫ z

1
IJ(z

′)dz′, (11)

T6(z) = J0

(
en/4A

)
Y0

(
enz/(2L)A

)
Y1 (A)

∫ z

1
IJ(z

′)dz′, (12)

T7(z) =−J0

(
enz/(2L)A

)
J1 (A)Y0

(
en/4A

)∫ 0

1
IY (z

′)dz′, (13)

T8(z) = J0

(
en/4A

)
J1 (A)Y0

(
enz/(2L)A

)∫ 0

1
IY (z

′)dz′, (14)

T9(z) =−J0

(
en/4A

)
J1 (A)Y0

(
enz/(2L)A

)∫ L/2

1
IY (z

′)dz′, (15)

T10(z) = J0

(
en/4A

)
J0

(
enz/(2L)A

)
Y1 (A)

∫ L/2

1
IY (z

′)dz′, (16)

T11(z) = J0

(
enz/(2L)A

)
J1 (A)Y0

(
en/4A

)∫ z

1
IY (z

′)dz′, (17)

T12(z) =−J0

(
en/4A

)
J0

(
enz/(2L)A

)
Y1 (A)

∫ z

1
IY (z

′)dz′. (18)
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