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Abstract: The light curves of exoplanetary system transits show only one minimum. 
The lack of the secondary minima makes difficult the determination of the orbital 
elements for elliptic orbits. For circular orbits we determine the intervals for radius 
ratio, the interior tangent angle and limb darkening of the star. For each (k, θi) we 
compute the star radius and orbital inclination. For elliptic orbits the eccentricity and 
periastron longitude as function of transit time and light curve asymmetry are 
determinated.   

Key words: stellar photometry, exoplanetary systems. 

1. INTRODUCTION 

The first discoveries of exoplanets were made by photometric observations. 
The light curves of the parent stars show periodical variations of small amplitude 
(about hundredths magnitudes). The lack of secondary minima shows that the 
observed phenomena are due to the transit of a small size body. The hypothesis of a 
cold dwarf star companion was rejected because the light curves show no 
observable secondary minima (occultation). So, the companion of the parent star 
was considered to be a planet. In order to produce a detectable drop of magnitude 
the planet must have a big size, similar with giant planets of our solar system. 
Several observational techniques were developed and proved the existence of 
exoplanetary systems. 

The principal techniques used in present are: 
– direct imaging of the star-planet system 
– interferometric imaging of the star-planet system 
– detection of the planetary system in a composite spectrum of star and planet 
– astrometric detection of the star motion around the star-planet center of 

mass 
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– radial velocity measurement of the parent star. 
The detection of the Earth-like planets by photometrical methods is more 

difficult because of the small effects produced by transit.  

2. ORBITAL ELEMENTS CALCULATION 

2.1. THE CASE OF CIRCULAR ORBITS 

We will use the following symbols: 
 
rs – star relative radius 
rp – planet relative radius 
k = rp/rs 
a – mean separation  
i – orbit inclination 
l0 – normalized light at minimum time 
u – limb darkening of the star 
θ − orbital angle relative to the observed light minimum 
θe – first contact angle 
θi – second contact angle 
∆ – projection of the star – planet separation 
 
For u = 0 we have the following equation: 
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For u ≠ 0 we have: 
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In equation (2) one considered that the brightness is constant for the entire 

stellar surface occulted by the planet at one given moment. In the case of central 
transit we have: 
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This value represents the inferior limit for k. 
 
For general case (non-central transit) we have 
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In the case of grazing annular transit (φ ≈ 900) from relation (2) one obtains 
the superior limit for k, 
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From the light curve we can determine the depth of the minima (1–l0) and 
exterior tangent angle θe with sufficient accuracy. 

 
From the theory of the spherical eclipsing binary stars we have: 

 (1 )s p sr p r r k p∆ = + = +   (7) 

where the value of p lies between 1 and 1/rp during the transit. 
 
Since 

 2 2 2 2 2(sin cos cos )a i∆ = θ + θ  (8) 

with a = 1, for the parameter p we will obtain the value 

 2 2 21 1cos sin sin
p

p i i
r k

= + θ − . (9) 

For θ = θe, p = 1 and θ = θi, p = –1. By replacing these values of p in equation 
(8) one obtains the following equations: 
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From equations (10a) and (10b): 
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From relation (11) results: 
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Since b>1, from (12) one results the condition: 
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We find by this way the superior limit of θi 
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For determining the value of  i  we will do successive trials. From stellar 
models we choose the limb darkening coefficient. From the light curve we know  
1 – l0 and θe. For each value of k (kinf < k < ksup) we find from equation (13) the 
possible values of θi in the domain [0, θi sup]. For each pair (k, θi) from equation 
(12) one obtains the value of  i. 

By equation (10) we get the relative radius of the planet: 
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The relative star radius will be: 

p
s
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k
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For each set of elements (k, rp, i, u) we can calculate the theoretical light-
curve. 

Observation of planetary transits allows determining with great accuracy the 
value of limb darkening coefficient of the star. For eclipsing binary stars the light-
curves show different phenomena such as non-spherical components, mass 
transfer, and existence of spots, intrinsic variability, and the existence of 



5 A method for exoplanetary systems elements determination  7 

circumstellar matter and so on. In such a case is difficult to determine the value of 
u with high accuracy. For planetary transits the light-curves are very smooth, all 
the factors which distort the light-curves missing. 

For small values of  rs/a  (large orbits) and for i ≠ 90º, the projection of the 
orbital arcs between the exterior contacts can be approximated by a straight line. In 
this case the total duration of the transit (ttr) and the duration of annular phase (tann) 
are given by: 

 2 2(1 ) costr s
Pt r k i= + −
π

 (15) 

 2 2 2(1 ) cosann s
Pt r k i= − −
π

.  (16) 

The values of P and ttr can be accurately determined from observations. For 
different values of tann, close to the point in which the slope of the curve shows a 
significant change, and with the value of u obtained from stellar models, from 
equations (2), (3), (15), (16) we can obtain the approximate the values of k, rs and i. 

 

2.2. THE CASE OF ELLIPTICAL ORBITS 

Many exoplanet orbits show eccentricity. Statistically, when the larger semi-
major axis is bigger than the eccentricity is higher. For such cases the light curve is 
asymmetrical and the time of minima do not correspond with the inferior 
conjunction of the planet for ω ≠ 90° and 270°. Let’s consider the star fixed and υ 
the longitude related to inferior conjunction time in orbital plane of the planet’s. 
We have: 

 v 270o= + υ−ω   (17) 

where v is the true anomaly of the planet. 
 
In this case: 
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The light minimum will be for: 
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(Martinov 1971), where: 
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Mean anomaly expressed in radians can be approximated with the following 
relation: 

 232 sin sin 2 ...
4

M e e= υ− υ+ υ −  (21) 

From (17) and (21) result: 
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We note by υ1 (egress) and υ2 (ingress) (υ1 < υ2) the planet orbital longitudes 
for exterior contacts and by M1 and M2 the corresponding mean anomalies. If M0 is 
the mean anomaly for the observed photometric minimum 
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where θ 1 and θ 2  are the observed exterior tangent angles. 
 

The maximum asymmetry of the light curve is reached for ω = 0 and ω = π. 
The value of |υ0| shows a relative maximum for ω = 0 and ω = π. As smaller is I, as 
greater is the value of |υ0|. For example for ω = 0, e = 0.50 and i = 80° from 
equation (19) results υ0 = 0.88°. The mean anomaly corresponding to υ0 is: 

 2
0 0 0 0

2 32 cos( ) sin(2( ))
3 4

M e eπ
= + υ −ω+ υ −ω − υ −ω . (25) 

The value of θ will be: 

 0M Mθ = − . (26) 
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Now, we can compare the theoretical orbit with the observed one. 
To find the orbital elements we proceed as follows: the values of υ0, υ1, υ2 

there are in a few degrees interval centered on 0, θ1 and θ2 , respectively. For each 
set of  (υ0, υ1, υ2) from equations (23) and (24) we find the values for e and ω, 
where the values of θ1 and θ2 are obtained from the observed light curve. The i is 
given by eq.(19). Relation (18) one can write for υ1: 

 sr
2

2 2
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1
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a ek i
e
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+ = − υ

+ υ −ω
. (27) 

With k approximated by (2) one obtains rs. With these elements one can 
calculate the theoretical light curve lth(υ). To compare the lth (υ) with the observed 
light curve we have to express θ as function of υ. By (23) one gets:  
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By successive approximations for different υ0, υ1, υ2 we choose the 
theoretical light curve lth(θ) that provides the best fitting with the observed light 
curve lobs(θ). It’s obvious that υ0, υ1and υ2 there are close to 0, θ1 and θ2 
respectively. We mention that for υ0 > 0, ω lies between –π/2 and π/2 and for υ0 < 0, 
ω lies between π/2 and 3π/2. 

 
During the transit the orbit can be considered as a circular one with mean 

radius: 
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where sin* (υ–ω) is the mean value given by: 
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Denoting with k', rg
' and i' the values as function of a' obtained for elliptical 

orbit one can find the correspondent values taking a as unit: 
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(Martinov, 1971). 

3. CONCLUSIONS 

The most approachable method to observe the exoplanet transits is the 
photometric one. A good seeing and a high quality receiver would permit the 
photometric observations even with small instruments. The precision of 
photometric observations is ultimately limited by photon noise and by the sky 
background. These errors can be reduced by increasing the exposure time T, 
because they scale with T–1/2. 

In case of giant planets the light reflected by planet provides a small light 
variation outside of transit depending on albedo, phase angle (α) and wavelength. 
The intensity ratio between the planetary and stellar emission is: 

 2( ) ( / ) ( )pp r aλ λ λε α = φ α  (32) 

where pλ  is the geometric albedo and Φ(α) is the phase function.  
 
In case of the a Lambert sphere, which scatters all incoming photons 

isotropic,   pλ =2/3 and 

 sin ( )cos( )λ
α + π −α α

φ α =
π

. (33) 

With the precision of the photometric space missions, it should thus be 
possible to detect the starlight reflected by hot Jupiters through their phase 
variation. At the end of transit and beginning of occultation the phases of the planet 
are very close to 0 and 1, respectively, even for small orbits. As example, with the 
elements of the system HD209458 (Brown et al., 2001) the magnitude variation 
between transit and occultation should be ∆m = 0.0014 in case of the Lambert 
sphere. From (32) one can estimate pλ taking Φλ(0) = 1 

 2(2.512 1)( / )mp a r∆
λ = − . (34) 

A statistical study about the exoplanet orbits (Santos et al., 2003) pointed out 
the followings: 
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– All planets with short periods (P < 10 days) have small eccentricities 
(e < 0.1). 

– Eccentricity-period relations for exoplanet and binary stars are very similar. 
– There is a exoplanet class with long periods having almost circular orbits. 
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