
 

Rom. Astron. J., Vol. 21, No. 1, p. 000–000, Bucharest, 2011 

LAGRANGE–JACOBI  AND  SUNDMAN  RELATIONS 
IN  QUASIHOMOGENEOUS  MODELS 

VASILE  MIOC 1,  EMIL  POPESCU 1,2,  NEDELIA  ANTONIA  POPESCU 1 

Astronomical Institute of the Romanian Academy 
Str. Cuţitul de Argint 5, 040557 Bucharest, Romania 

E-mail: vmioc@aira.astro.ro, nedelia@aira.astro.ro  
  

2 Technical University of Civil Engineering 
Bd. Lacul Tei 124, 020396 Bucharest, Romania 

E-mail: epopescu@utcb.ro 

Abstract. We tackle the n-body problem attached to quasihomogeneous potentials. We prove 
that relations analogous to the Lagrange–Jacobi equality and to Sundman’s inequalities exist 
within the framework of this much more general model, too. These results are valid for fields 
of different nature, not necessarily gravitational. 
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1.  INTRODUCTION 

The quasihomogeneous models in classical and celestial mechanics are more than 
three centuries old. Newton was the first to study such a model in his Principia (Book I, 
Article IX, Proposition XLIV, Theorem XIV, Corollary 2). He considered a gravitational 
force deriving from a potential of the form 2// rBrA  . After Newton, such a potential 
was considered by Clairaut (see, e.g., Diacu et al. 1995, 2000; Delgado et al. 1996; Mioc 
and Stoica 1997). 

Quasihomogeneous potentials regardless to the nature of the forces they generate 
were approached by Diacu (1996) (expansion with two terms) or Mioc and Stavinschi 
(2002) (expansion with N  terms). In these models the powers of r  are not necessarily 
integers. 

In this paper we shall tackle a much more general model of quasihomogeneous 
potential. This potential covers all the above quoted models and many others. 

DEFINITION 1.1. We will call quasihomogeneous a potential having the form of 
a sum of homogeneous potentials: 
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where the parameters kA  have different analytical expressions according to the field 
they characterize (but they depend neither on r, nor explicitly on time), k  are real 

numbers ( 1,1,1   Nkkk ), whereas r stands for the radius vector of one 
particle with respect to another in the force field generated by this potential. 

Remark 1.2. As far as our knowledge goes, potential (1.1) is much more general 
than the above quoted ones for a twofold reason: (i) k  may run all along the real axis; 
(ii) such a model allows the study of particle dynamics under hybrid forces of totally 
different nature. 

Remark 1.3. In many applications in astronomy, the expression (1.1) represents a 
truncated series. However, we also consider here the case N  for generality (see 
Condition 2.1 in Section 2, and see Section 5 for examples), even if in studies of concrete 
situations N  is finite. 

Within this very general framework, our results provide a unifying viewpoint 
(physical and mathematical) for a lot of problems of particle dynamics (we direct again 
the reader to Section 5). We shall extend some results of the classical celestial mechanics 
to such a general potential. 

In Section 2, we establish the basic equations of the n-body problem under the 
potential (1.1). We state a condition allowing the extension of the theory to the case 

N . We point out the first integrals of motion, out of which we use only the angular 
momentum and energy integrals. 

Section 3 proves the existence of an analog of the classical Lagrange–Jacobi 
relation in this much more general framework, too. This relation connects the moment of 
inertia of the n-body system to the potential and constant of energy. 

Section 4 proves the existence of the two classical Sundman-type inequalities in 
this general model. They connect the angular momentum of the system to the moment of 
inertia and the potential. 

In Section 5 we exemplify the applicability of our general model of potential to 
problems of particle dynamics in the most various fields: purely gravitational (either 
classical or relativistic), purely nongravitational, hybrid. All of them (single or mixed) 
may have different physical nature. The classical results remain valid within this much 
more general framework. 

Section 6 emphasizes what our endeavour brings new as compared to results 
obtained so far concerning particle dynamics in quasihomogeneous fields. 
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2.  BASIC  EQUATIONS 

Let us consider a system of n interacting particles nimi ,1,0  ; let 
3),,( Rr  iiii zyx  be their position vectors with respect to an arbitrary origin; let 

n
n

3
21 ),...,,( Rrrrr   be the configuration of the system. Let the motion of the system 

be ruled by a quasihomogeneous force deriving from a potential function of the form 
(1.1), in which 
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}|{1 jinji rrr    is the collision set, whereas RR 2
, :ijkA , are symmetric 

functions (mainly of masses, but not only, as we shall see in the last section): 
jikijk AA ,,  . 

The dynamics of this n-body system in such a field is described by the vectorial 
equation 
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To be able to tackle the case N , too (see Remark 1.3), we state 

CONDITION 2.1. The series of functions 2
1 , / 

  k
ijk ijkk rA  (see (2.2) above) 

converges uniformly on \3nR . 

Remark 2.2. Because the series k
k kA 

 ||/
1

r  is simply convergent to )(rU  and 

the series of derivatives 2
1 , / 

  k
ijk ijkk rA  is uniformly convergent, then, by the 

Theorem of differentiation term by term of the series of functions, the series of 
derivatives tends to iU rr  /)(  and is continuous on \3nR . 

Remark 2.3. It is clear that, putting ii rq  , rq   (the configuration vector), 

iii m rp  , n
n

3
21 ),...,,( Rpppp   (the momentum vector), and defining 

)()(),( qppq UTH   as the Hamiltonian function (where T  is the kinetic energy), 



 Vasile MIOC, Emil POPESCU, Nedelia Antonia POPESCU 4 

equations (2.2) can be transposed into a canonical form. 

Standard results of the theory of differential equations ensure, for given initial 
conditions )0)(,( trr  , the existence and uniqueness of an analytic solution of the 

system (2.2), defined on an interval ),(  tt ,   tt 0 . This can be analytically 

extended to a maximal interval )~,~(  tt ,   tttt ~0~ . If 

t~ , the solution is regular; else, it encounters a singularity. 
There is no difficulty to prove that there exist ten classical first integrals for the 

system (2.2): the integrals of momentum 3
1

, Rααr  

n
i iim  ; the integrals of mass 

centre 3
11

,)( Rββrr   
tmm n

i ii
n
i ii  ; the integrals of angular momentum 
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1
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and the integral of energy 

 Rrr  hhUT ,)()( , (2.4) 

where Cβα ,,  and h are integration constants. 
In the last relation, the kinetic energy of the system has the expression 
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Remark 2.4. We may fix the origin of the coordinates in the common mass centre of 
the n-body system. Performing this transformation, equations (2.2) and the integrals (2.3) 
and (2.4) keep their form, but in the integrals of momentum and of mass centre we shall 
have, without loss of generality, β0α  , with 3)0,0,0( R0  . It is easy to see that, 
with this particular origin, the results as regards the motion remain the same. 

3.  LAGRANGE–JACOBI  RELATION 

Consider the n-body system of interacting particles nimi ,1,0  , and let 
3),,( Rr  iiii zyx  be their position vectors with respect to the origin 

3)0,0,0( R0  . The moment of inertia )(rJ  of the system is defined by 



5 Quasihomogeneous Models: Lagrange–Jacobi and Sundman Relations   

 



n

i
iimJ

1

2||
2
1)( rr . (3.1) 

Remark 3.1. It is obvious from (3.1) that the moment of inertia represents a 
physical measure of the distribution (scattering) of the bodies (particles) in space. 

THEOREM 3.2. In the n-body problem associated to a quasihomogeneous field, 
the following relation holds: 
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where )(rJ  is the second derivative of )]([ rJ  with respect to the time. 

Proof. Differentiating the expression (3.1) of the moment of inertia )(rJ  with 
respect to the time, we get 
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The time-differentiation of (3.3) leads to 

 



n

i
iiiimJ

1

2 )()( rrrr  . (3.4) 

By virtue of (1.1), (2.1), and (2.2), the following relation results easily: 
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or, taking into account (2.2) once again, 
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On the other hand, formulae (1.1), (2.1), (2.4), and (2.5) lead immediately to 
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Adding (3.6) and (3.7) together, and plugging the resulting expression in (3.4), the 
equality (3.2) follows straightforwardly. This completes the proof. □ 

Remark 3.3. The equality (3.2) is nothing else but the Lagrange–Jacobi relation 
transposed for the much more general quasihomogeneous model. 

Remark 3.4. The proof of Theorem 3.2 follows that given by Wintner (1941) for 
the Newtonian model. The respective arguments have also been used by Mioc and Stoica 
(1996) to prove an analogous theorem for a sum of two homogeneous potentials. 

4.  SUNDMAN-TYPE  INEQUALITIES 

Within the Newtonian model, the inequalities of Sundman connect the moment of 
inertia and the angular momentum (of course, under the respective potential). We shall 
prove that inequalities of this type hold within the quasihomogeneous models, too. To 
begin, we state 

THEOREM 4.1. In a quasihomogeneous field, the following inequality holds: 
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inequality in the case of formula (2.3), we get 
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Squaring (4.2), and recalling that |||||| yxyx  , we obtain 
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Here we have to resort to the classical inequality 
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Applying (4.4) to (4.3), it results 
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Resorting to (2.5) and (3.1), it follows immediately 

 )()(4|| 2 rrC TJ . (4.6) 

By the energy integral (2.4) and the relation (3.2) from Theorem 3.2, one easily obtains 
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which, replaced in (4.6), leads to the inequality (4.1). This completes the proof. □ 

This result can be refined in the form of 

THEOREM 4.2. In a quasihomogeneous field, an inequality stronger than (4.1) 
holds: 
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relation that, taking into account the definition (3.1) of the moment of inertia, may be 
written in the form 
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Now, rewriting (4.2) as 
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squaring, and using (4.4) again, then considering (3.1), we obtain 
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Adding (4.11) and (4.13) together, then using the well-known relation 
2222 |||||||| yxyxyx  , and taking into account the definition (2.5), we easily get the 

inequality 

 )()(4)]([|| 22 rrrC  TJJ  . (4.14) 

Finally, substituting the expression (4.7) of )(rT  in (4.14), the inequality (4.8) is 
obtained. This completes the proof. □ 

Remark 4.3. The inequalities (4.1) and (4.8) are analogous to those established by 
Sundman (see, e.g., Wintner 1941) for the classical Newtonian potential. 

5.  APPLICABILITY 

In this section we shall point out some concrete fields covered by the 
quasihomogeneous model featured by Definition 1.1. Our previous results are obviously 
valid within all these fields. Of course, the parameters kA  differ from model to model; 
they will not be specified here. 

5.1. Classical gravitational models: 
– Manev’s model, with 2N , 11  , 22   (e.g., Maneff 1924, 1925, 1930a,b; 

Diacu 1993; Mioc and Stoica 1995a,b; etc.). 
– The 2J  problem (main problem of satellite dynamics), with 2N , 11  , 
32   (the bibliography is huge and easily available). 
– The zonal satellite problem, with N , 11  , 02  , )3(  kkk  (e.g., 

Mioc and Stavinschi 1998a,b; etc.). 
5.2. Relativistic gravitational models: 
– Schwarzschild model, with 2N , 11  , 32   (the bibliography is huge and 

easily available). 



9 Quasihomogeneous Models: Lagrange–Jacobi and Sundman Relations   

– Fock’s model, with 4N , 4,1,  kkk  (e.g., Fock 1959; Mioc and Pérez-
Chavela 2008; etc.). 

– Schwarzschild – de Sitter model, with 3N , 21  , 12  , 33   (e.g., 
Blaga and Mioc 1992; Mioc and Pérez-Chavela 2010; etc.). 

5.3. Classical nongravitational models: 
– The diffuse re-emitted radiation pressure, with N , k  integers (e.g., Mioc 

and Radu 1982; etc.), or the infrared re-emitted radiation pressure. 
– The Lennard-Jones model with 2N , 61  , 122   (Lennard-Jones 1931; 

Mioc et al. 2008a,b; etc.). 
– A planetary magnetic field, with N , k  integers (the bibliography is huge 

and easily available). 
5.4. Mixed classical models: 
– The photogravitational model (gravitation plus radiation) with a non-Newtonian 

gravitational force. 
– The gravito-elastic model, with 2N , 21  , 12   (e.g., Mioc and 

Stavinschi 1999). 
– Models from atomic physics: the potential energy of an outward electron in the 

field of the nucleus, with 2N , 11  , 22   (e.g., Sommerfeld 1951; Belenkii 1981). 
5.5. Relativistic mixed models: 
– The Reissner–Nordström model, with 2N , 11  , 22  . 
Of course, the models covered by our quasihomogeneous potential are much more 

numerous than the ones presented above. 

6.  SUMMARY  AND  NEW  RESULTS 

In this last section we shall summarize what we have done in this paper and what 
we brought new as compared to previous results in this domain. 

We defined a very general model, in which the interaction between particles is 
mainly gravitational, but a lot of other forces are allowed. 

We proved the existence of an analog of the classical Lagrange–Jacobi relation in 
this much more general framework. 

We proved the existence of the two classical Sundman-type inequalities in this 
general model. 

We exemplified the applicability of our general model of potential to problems of 
particle dynamics in the most various fields: purely gravitational (either classical or 
relativistic), purely nongravitational, hybrid. All of them (single or mixed) may have 
different physical nature. The classical results remain valid within this framework. 
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As to new results, we mention that we generalized the previous results to the case 
N , not tackled in this kind of analyses yet. 
We also generalized the previous results by taking into account negative values of 

k  (so far only positive k  were considered). In this way, models as the Schwarzschild – 
de Sitter one or the gravito-elastic one can join these general results, too. 

Acknowledgments. This paper was presented at the National Conference “Modern Topics in 
Astronomy”, Bucharest, 19 November 2010. 
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