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Abstract. On galactic scales, stars can be considered as point sources that move virtually 
without collisions on orbits determined by their common gravitational potential. Most of 
published studies start with classical epicycle theory and try to correct it. Unfortunately, the 
most accurate orbit approximation leads to non-analytical R(t). From this approximation, 
accurate estimates can be obtained for action integrals of galactic orbits. For this work, I 
consider the action integral and manipulate it to obtain the approximate solutions of stellar 
orbits. 
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1.  INTRODUCTION 

Stars travel within and around the Galaxy, and galaxies orbit within their groups 
and clusters, under the force of gravity. Stars are so much denser than the interstellar gas 
through which they move that neither gas pressure nor the forces from embedded 
magnetic fields can deflect them from their trajectories. If we know how mass is 
distributed, we can find the resulting gravitational force, and from this we can calculate 
how the positions and velocities of stars and galaxies will change over time. 

We can also use the stellar motions to tell us where the mass is. As we know, much 
of the matter in the Milky Way cannot be seen directly. Its radiation may be absorbed, as 
happens for the visible light of stars in the dusty disk. Some material simply emits too 
weakly: dense clouds of cold gas do not show up easily in radio-telescope maps. The 
“infamous” dark matter still remains invisibly mysterious. But, since the orbits of stars 
take them through different regions of the galaxies they inhabit, their motions at the time 
we observe them have been affected by the gravitational fields through which they have 
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travelled earlier. So we can use the equations for motion under gravity to infer from 
observed motions how mass is distributed in those parts of galaxies that we cannot see 
directly. 

Usually we can consider the stars as point masses, because their sizes are small 
compared with the distances between them. Since galaxies contain anywhere between a 
million stars and 1012 of them, we usually want to look at the average motion of many 
stars, rather than following the individual orbit of each one. We prove the virial theorem, 
relating average stellar speeds to the depth of the gravitational potential well in which 
they move. Orbital dynamics and the virial theorem are our tools to find masses of star 
clusters and galaxies. 

The gravitational potential of a galaxy or star cluster can be considered as the sum 
of a smooth component, the average over a region containing many stars, and the very 
deep potential well around each individual star. We will see that the motion of stars 
within a galaxy is determined almost entirely by the smooth part of the force. Two-body 
encounters, transferring energy between individual stars, can be important within dense 
star clusters. We discuss how these encounters change the cluster’s structure, eventually 
causing its dispersion or “evaporation”. The epicycle theory is a way to simplify the 
calculation of motions of stars that follow very nearly circular orbits within a galaxy’s 
disk. 

2.  MOTION  UNDER  GRAVITY 

Newton’s law of gravity tells us that a point mass M  attracts a second mass m  
separated from it by distance r , causing the velocity v  of m  to change according to  
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where G is the Newtonian gravitational constant. In a cluster of N  stars of masses m  

( N,1 ), at positions x , we can add the forces on star   from all the other stars: 
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The mass m  cancels out of this equation, so the acceleration td/d v  is 
independent of the star’s mass: light and heavy objects fall equally fast. This is the 
principle of equivalence between gravitational and inertial mass, which is the basis for 
the general relativity theory.We can write the force from the cluster on a star of mass m  
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at position x  as the gradient of the gravitational potential )(x : 
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where we have chosen an arbitrary integration constant so that 0)(  x  at large 
distances. If we think of a continuous distribution of matter in a galaxy or star cluster, the 
potential at point x  is given by an integral over the density )'(x at all other points: 
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and the force per unit mass is 
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The integral relation of equation (4) can be turned into a differential equation. 
Applying 2  to both sides, we have 
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In three dimensions, differentiating with respect to the variable x  gives, for xx  : 
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So the integrand on the right-hand side of equation (6) is zero outside a small sphere 
 )(S x  of radius centered on x. If we consider that the density   is almost constant 

inside the sphere, we have 
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In the last step, 2
'x  means that the derivative is taken with respect to the variable x , 

instead of x . 
Now we can use the divergence theorem: for any smooth-enough function f , the 
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volume integral of f2
'x   over the interior of any volume is equal to the integral of 

Sf  d2
'x  over the surface. We also have ff 2

'x  for any function ) ( xx f . 
Setting  |,|1/ x x f  equation (7) tells us that, on the surface of the sphere )(xS , 

the gradient f'x  is a vector of length 2 pointing in toward the point x . The surface 

area is 24 , so the integral of Sf  d2
'x  in equation (8) is π4 . We have Poisson’s 

equation: 

 )(4)(' xxx  G . (9) 

This can be a more convenient relationship between the potential )(x  and the 
corresponding density than the integral in equation (4). To choose an approximation for 
the density )(x  of a star cluster or galaxy, we can select a mathematically convenient 
form for the potential )(x , and then calculate the corresponding density. 

We must take care that 0)(  x  everywhere for our chosen potential; various 
apparently friendly potentials turn out to imply 0)(  x  in some places. The problems 
below deal with some commonly used potentials. 

For a spherical galaxy or star cluster, Isaac Newton proved two useful theorems 
about the gravitational field. The first states that the gravitational force inside a spherical 
shell of uniform density is zero. In Fig. 1, the star at S experiences a gravitational pull 
from the material at A within a narrow cone of solid angle  , and a force in the 
opposite direction from mass within the same cone at B. By symmetry, the line AB makes 
the same angle with the normal OA to the surface at A as it does with OB at B. Thus the 
ratio of the mass enclosed is just 2)SB/SA( ; by the inverse-square law, the forces are 
exactly equal, and cancel each other out. Thus there is no force on the star, and the 
potential )(x  must be constant within the shell. 

 

 
Fig. 1 – The gravitational force inside a uniform hollow sphere with its center at O. 
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The second theorem says that, outside any spherically symmetric object, the 
gravitational force is the same as if all its mass had been concentrated at the center. If we 
can show that for a uniform spherical shell, it must be true for any spherically symmetric 
object built from those shells. To find the potential )(x  at a point P lying outside a 
uniform spherical shell of mass M  and radius a , at distance r  from the center, we can 
add the contributions   from small patches of the shell. On the left of Fig. 2, the mass 
in a narrow cone of opening solid angle   around Q  contributes 
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Now think of the potential  at point P , lying at distance a  from the center 
inside a sphere of the same mass M , but now with radius r . On the right of Fig. 2, we 
see that the contribution  from material in the same cone, which cuts the larger sphere 
at Q, is 
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Fig. 2 – The gravitational potential outside a uniform spherical shell. 

But, because QPQP  , this is equal to )]P([x . So, when we integrate over the 
whole sphere, 

 rGMxx /]0[)]P([)]P([)]P([  xx , (12) 

the potential and force at P are exactly the same as if all the mass of the sphere with 
radius a  had been concentrated at its center. 
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These two theorems tell us that, within any spherical object with density )(r , the 
gravitational force toward the center is just the sum of the inward forces from all the 
matter inside that radius. The acceleration rV /2  of a star that moves with speed )(rV  in 
an orbit of radius r  about the center must be provided by the inward gravitational force 

)(r rF . So, if )( rM   is the mass within radius r , we have 

 2r

2 )()()(
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whenever we can find gas or stars in nearly-circular orbit within a galaxy, and this is the 
simplest and most reliable way to estimate the mass. 

For a point mass, we have 2/1)(  rrV ; in a spherical galaxy the rotation speed 
can never fall more rapidly than this. The potential )(r  is 
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We see that )(r  is not equal to rrGM /)( , unless the whole mass lies within the 
radius r . But equation (4) implies that, for a great distance from any system with finite 
mass totM , 

 x
x tot)( GM
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When finding the orbit of a single star moving through a galaxy, we will see in 
Section 3 that we can usually ignore the effect which that star has in attracting all the 
other stars, and thus changing the gravitational potential. If we have a static mass 
distribution, the potential at position x  does not depend on time. Then as the star moves 
with velocity v , the potential )(x  at its location changes according to 

)(d/d xv  t . Taking the scalar product of equation (3) with v , we have 
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Thus 

 orbit)  the(along const.  )(  /2 2  xv mm . (17) 
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The star’s energy   is the sum of its kinetic energy 2/2vmK   and the 
potential energy )(x mP . The kinetic energy cannot be negative, and equation (15) 
tells us, for an isolated galaxy or star cluster, that 0)(  x . So a star that lies at 
position x  can escape only if it has 0 ; it must move faster than the local escape 
speed ev , given by 

 )(22
e xv . (18) 

In a cluster of stars, the gravitational potential will change as the stars move: 
),( tx . The energy of each star is no longer conserved, only the total in case of the 

cluster as a whole. To show this, we take the scalar product of equation (2) with v , and 
sum over all the component stars. The left-hand side gives the derivative of the total 
kinetic energy K : 
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But we could have started with the equation for the force on star  , and taken the 
scalar product with v  to find 
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Adding the right-hand sides of the last two equations, we get 
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The cluster’s potential energy P  is the sum of contributions from pairs of stars: 
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dividing by two (each pair contributes only with one term to the sum). On adding 
equations (19) and (20), we see that 
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Thus the total energy  PK  of the cluster is constant. 

3.  TWO-BODY  RELAXATION 

While a star moves in the smoothed potential of a star cluster, equation (17) shows 
us that its orbit does not depend on it, or it is heavy or light (only on its position or 
velocity). If the smoothed potential )(x  does not change with time, the energy of the 
star remains constant. By contrast, two-body ‘collisions’ allow two stars to exchange 
energy and momentum in a way that depends on both their masses; this is known as the 
two-body relaxation. 

Just as for the air molecules in a room, the exchanges on average will shift the 
velocities of the stars toward the most probable way of sharing the available energy: this 
is a Maxwellian distribution. The fraction f  of stars with velocities v , between v  and 

vv   is given by vvf  2
M 4)( , where 
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and Bk  is Boltzmann’s constant. The ‘temperature’ T  depends on the energy of the 
system: it is higher when the stars are moving faster. The problem below shows that, for 
stars of mass m , T  is related to the average of the squared velocities by 

 2/32/)( B
2 Tkm xv . (25) 

Two-body relaxation, in Maxwellian form, causes stars to evaporate from the 
cluster. The distribution )(M f  includes a small number of stars with arbitrarily high 
energy; but any stars moving faster than the escape speed ev  given by equation (18) are 
not bound to the cluster and will escape. In a cluster of N  stars with masses m  at 
positions x , equation (22) tells that the average kinetic energy needed for escape is 
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where P  and K  are the potential and kinetic energy of the cluster as a whole. The 
average kinetic energy needed for escape is just four times the average for each star, or 

TkB6 , so the fraction of escaping stars in the Maxwellian distribution Mf  is 
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These stars leave the cluster; after a further time relaxt , and new stars are promoted 
above by the escape energy. The cluster loses a substantial fraction of its stars over an 
evaporation time 

 relaxevap 136tt  . (28) 

In the observed globular clusters, evapt  is longer than the age of the Universe; any 

clusters with very short evaporation times presumably dissolved before we could observe 
them. For open clusters evapt  is only a few Gyr. In practice, these clusters fall apart even 

more rapidly, since evaporation is helped along by the repeated gravitational tugs from 
the spiral arms and from giant clouds of molecular gas in the disk. 

 
Fig. 3 – In the Pleiades open cluster, stars with masses above MSun (dashed histogram) 
are more concentrated toward the center than stars with M < MSun (solid histogram). 

Two-body relaxation also causes mass segregation. Heavier stars congregate at the 
cluster center, while lighter stars are expelled toward the periphery; we see the result in 
Fig. 3. If initially the cluster stars are thoroughly mixed, with similar orbital speeds, the 
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more massive stars will have larger kinetic energy. But, in a Maxwellian distribution, 
their kinetic energies must be equal. Thus, on average, a massive star will be moving 
slower after an encounter than it did before. It then sinks to an orbit of lower energy; so 
the cluster center fills up with stars that have too little energy to go anywhere else. But, as 
the cluster becomes centrally concentrated, these tightly bounded stars must move faster 
than those further out, increasing their tendency to give up energy. 

Meanwhile, the upwardly mobile lighter stars have gained energy from their 
encounters, but spend it in moving out to the suburbs. Their new orbits require slower 
motion than before, so they have become even poorer in kinetic energy. 

Mass segregation is a runaway process: the lightest stars are pushed outward into 
an ever-expanding diffuse outer halo, while the heavier stars form an increasingly dense 
core at the center. Almost all star clusters have been affected by mass segregation. The 
smallest and luminous stars, that carry most of the cluster’s mass, are dispersed far from 
the center. So, we have to be careful to trace them when estimating the cluster’s mass or 
the stellar mass function. Pairs of stars, bound in a tight binary, will effectively behave 
like a single more-massive star, sinking to the core. The X-ray sources in globular 
clusters are binaries in which a main-sequence star orbits a white dwarf or neutron star; 
they are all found near the cluster center. 

 

 
Fig. 4 – Surface brightnesses of M15 globular cluster. The constant-density core is absent, or too  small to 

measure. The solid lines show it is in case of King model (see Binney and Tremaine 1987). 
 

Even if all the stars in a cluster have exactly the same mass, stars on low energy 
orbits close to the center have higher orbital speeds than do those further out. So, the 
inner stars tend to lose energy, while the outer stars gain it. Over time, some stars are 
expelled from the cluster core into the expanding halo, whereas the remaining core 
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contracts. The core becomes denser, while the outer parts puff up and become more 
diffuse. Calculations for clusters of equal-mass stars predict that, after relax)2012( t , the 
core radius shrinks to zero, as the central density increases without limit and this is core 
collapse. A cluster that is near this state should have a small dense core and a diffuse 
halo, as we see for M15 in Fig. 4. For a comparison, see also M4 in Fig. 5. 

 

 
Fig. 5 – Surface brightnesses of M4 globular cluster. The surface brightness is nearly constant at small 

radii, dropping almost to zero at the truncation radius rt ≈ 3000″. 
 

What happens to a cluster after core collapse? In the dense core, binary stars 
become important sources of energy. Just as two-body collisions tend to remove energy 
from fast-moving stars, so encounters between single stars and a tight binary pair will 
take energy from the binary. The energy is transferred to the single star, while the binary 
is forced closer. Depending on how many are present, binaries may supply so much 
energy to the stars around them that the core of the cluster starts to re-expand. 

4.  STELLAR  ORBITS  APPROXIMATION 

In this section, a general recipe is presented for approximately solving equation of 
motion. I also derive a way for obtaining an approximate map between ordinary phase-
space coordinates and action-angle variables. Worked examples, i.e., concrete orbit 
approximations, are presented in this section. 

The key idea in obtaining an approximation superior to classical epicycle theory is 
to transform the integrals into a form which is better adapted for replacing the argument 
of the square root by a quadratic. Consider writing equation as follows: 
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where )(R  is a positive definite function of R . The relation for )(Rx  follows upon 

integrating xxRR n dd)(   with integer n . We introduce the auxiliary variable   by 

 nxt d/d , (30) 

which essentially amounts to a new time variable. For 0n , equation (30) means that, 
for fixed d , the timestep td  is smaller near pericenter than near apocenter. 

With (30), equation (29) becomes 

   xxY d)(2/1 , (31) 

with 
 )]2/()()[(2)( 22 RLRERxY  . (32) 

 

 
Fig. 6 – Lindblad’s classical epicycle theory for the logarithmic potential. The solid line 

gives Y(R), while the quadratic approximation is shown as broken line. 

The new integral is formally identical to the original, and we might derive an 
approximate solution for x(η) in the same way as Lindblad’s epicycle theory is derived. 
Approximating 

 2
0

22 )( xxaXY  , (33) 

obtained, for example, via Taylor expansion, we find 
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 )/(),cos1( 00 axXeaexx  . (34) 

With this form of )(x , equation (30) is easily solved for )(t . However, )(t  
cannot be obtained analytically unless 0n  (Kalnajs 1979; Dehnen 1999). 

According to Binney and Tremaine (1987), the most useful function )(R  in the 
cases of 1  or R  is: 

 ]/)(2[2 22 RLREY  , (35) 

and the results, in the case of logarithmic potential, are given in Fig. 6. 

5.  THE  AZIMUTHAL  MOTION 

After obtaining an expression for )(tR , the radial angle R  is easily identified as 
the term, linear in time, of which )(tR  is a 2π-periodic function. With the above 
formalism, the radial action is 
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where  (xx ) is given in equation (31). For this integral to be soluble, )(R  must not 
be too complicated when expressed as function of x . 

The azimuthal motion may be obtained by inserting the approximation for )(tR  
into equation and integrate after further approximating the integrand. However, the 
approximate orbits generated in this way do not necessarily produce an incompressible 
flow in phase-space, as Liouville’s theorem demands. In other words, the part of )(t  
which is linear in time is not, in general, the angle R  canonical conjugate to the angular 
momentum L  at fixed ),( RRJ  . When using such an approximation, spurious effects 
may result from this lack. Note that in particular the textbook variant of Lindblad’s 
epicycle theory (Binney and Tremaine 1987, p. 124) suffers from this problem. 

Some known approximations are given below. 

5.1.  CLASSICAL  EPICYCLE  THEORY 

Lindblad’s classical epicycle theory is recovered from the above recipe for 1  
and 0n  (see Shu 1969). The Taylor expansion of Y  around LR , with LR RR  , 
reads 
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  (37) 

where the epicycle frequency   is evaluated at LR , and hence is a function of angular 
momentum. The large error of this approximation is related to the neglected third-order 
term in (37), which for stellar systems is never small, since always 0d/d 2  R  (see 
Dehnen 1998). The radial motion is approximated by 

 )cos1()( RL eRtR  , (38) 

 )/(2  LREe , (39) 

  /2/22 EeRJ LR , (40) 

where tR  . 

5.2.  KEPLERIAN  APPROXIMATION 

In case of the potential (Bičak et al. 1993): 
 

 
22 bRb

GM


 , (41) 

 

we consider the simple case 0b . The resulting approximation is exact for trajectories 
in the potential of a central point mass, corresponding to 0b  (Kalnajs 1971). The 
relations for the radial motion are familiar from celestial mechanics: 
 

 )cos1()(  eREtR , (42) 

  sinetR , (43) 

 2
C

222 /1)2/()/( LLRLe E  , (44) 

 ]11)[/2( 2
C eLJR  . (45) 

The result of these approximations is shown in Fig. 7. 



15 Approximate Models of Stellar Orbits  

 
Fig. 7 – Surfaces of the R–pR section of phase space: comparison of exact orbits in the logarithmic 

potential, which supports a flat rotation curve, with the predictions of the various orbit approximation. 
The orbital angular momenta are (from inside to outside) 0.973, 0.954, 0.902, 0.847, 0.796, 0.068, 

0.597, and 0.490 of LC(E). 
 

The classical epicycle theory of Lindblad is usually derived starting from the 
Hamiltonian or, equivalently, from the equations of motion for a near-circular orbit in a 
spherical or flat axisymmetric potential. Here, I directly considered integral (29) to be 
solved in order to obtain )(tR . The simplest way to approximate this integral by some 
closed form leads straightforwardly to the classical epicycle theory. I derive a general 
method for approximating this integral in a better way by manipulating the integrand. 
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