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Kepler observations of the high-amplitude δ Scuti star V2367 Cyg
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J. R. Hall,16 K. Kinemuchi16† and T. C. Klaus16

1South African Astronomical Observatory, PO Box 9, Observatory 7935, Cape Town, South Africa
2Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland
3Institute of Astronomy, University of Vienna, Türkenschanzstr. 18, A-1180 Vienna, Austria
4INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy
5INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy
6Instytut Astronomiczny, Uniwersytet Wrocławski, Kopernika 11, 51-622 Wrocław, Poland
7INAF-Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monteporzio, Roma, Italy
8Centro de Astrofı́sica, Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
9Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE
10INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli, Italy
11Departamento de Astrofı́sica, ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain
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ABSTRACT
We analyse Kepler observations of the high-amplitude δ Scuti (HADS) star V2367 Cyg
(KIC 9408694). The variations are dominated by a mode with frequency f 1 = 5.6611 d−1.
Two other independent modes with f 2 = 7.1490 d−1 and f 3 = 7.7756 d−1 have amplitudes
an order of magnitude smaller than f 1. Nearly all the light variation is due to these three
modes and their combination frequencies, but several hundred other frequencies of very low
amplitude are also present. The amplitudes of the principal modes may vary slightly with time.
The star has twice the projected rotational velocity of any other HADS star, which makes it
unusual. We find a correlation between the phases of the combination frequencies and their
pulsation frequencies, which is not understood. Since modes of highest amplitude in HADS
stars are normally radial modes, we assumed that this would also be true in this star. However,
attempts to model the observed frequencies as radial modes without mode interaction were not
successful. For a star with such a relatively high rotational velocity, it is important to consider
the effect of mode interaction. Indeed, when this was done, we were able to obtain a model in
which a good match with f 1 and f 2 is obtained, with f 1 being the fundamental radial mode.

Key words: stars: individual: V2367 Cyg – stars: oscillations – stars: variables: δ Scuti.

1 IN T RO D U C T I O N

The Kepler mission is designed to detect earth-like planets around
solar-type stars by the transit method (Koch et al. 2010). Kepler has
measured the brightness of over 100 000 stars in a 105-deg2 fixed

†Name corrected after online publication 2011 December 16.
�E-mail: lab@saao.ac.za

field of view with unprecedented precision. Among these are a large
number of δ Scuti (δ Sct) stars, including V2367 Cyg (KIC 9408694,
where KIC = Kepler Input Catalog, Brown et al. 2011).

High-amplitude δ Scuti (HADS) stars (previously known as
dwarf Cepheids or AI Vel stars) are commonly defined as δ Sct
stars with peak-to-peak light amplitudes in excess of 0.3 mag. From
the ground, HADS stars typically have only one or two dominant
frequencies which are most probably radial modes. Some stars,
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for example, AI Vel (Walraven, Walraven & Balona 1992), RY Lep
(Rodrı́guez et al. 2004; Derekas et al. 2009) and V974 Oph (Poretti
2003), appear to have low-amplitude non-radial modes in addition
to the dominant radial mode(s). Recently, a HADS star observed
by the CoRoT spacecraft was discovered to have many non-radial
modes as well as small but very clear amplitude modulation of the
fundamental radial mode (Poretti et al. 2011).

HADS stars seem to be concentrated in the central part of the
instability strip in a well-defined region. Fewer than 1 per cent of
the stars that lie in the δ Sct region are HADS stars (Lee et al. 2008).
There is no sharp distinction between HADS and other δ Sct stars;
whenever a HADS star is observed in more detail, non-radial modes
become detectable, making the star resemble an ordinary δ Sct star.
The distinction is mostly in the large light amplitude, which one
may expect of radial modes. Some HADS stars are members of
spectroscopic binaries (Derekas et al. 2009).

HADS stars are slow rotators (v sin i < 30 km s−1) and inter-
mediate between δ Sct stars and classical Cepheids in pulsational
behaviour (Breger 2007). In fact, first-overtone classical Cepheids
and HADS stars follow the same period–luminosity relation with
no discontinuity. The distinction between the two groups is arbi-
trary (Soszynski et al. 2008). In the interior of a giant star, even
high-frequency p modes behave like high-order g modes. The large
number of spatial oscillations of these modes in the deep interior
of giant stars lead to severe radiative damping. As a result, non-
radial modes are increasingly damped for more massive δ Sct stars,
which explains why HADS stars pulsate in mostly radial modes
and why in the even more massive classical Cepheids, non-radial
modes are no longer visible (Dziembowski 1977). This may not
be the only reason, or even the correct reason, why low-degree
non-radial modes are damped in giant stars and the problem needs
further investigation (Mulet-Marquis et al. 2007).

Because damping of non-radial modes increases as the star
evolves, one may expect that in the more evolved δ Sct stars ra-
dial modes start to dominate. In fact, ground-based observations
of HADS stars suggest that there is a group of these stars which
pulsate just in the fundamental and first-overtone modes and with
no non-radial modes (Poretti et al. 2005). Of course, the lower de-
tection threshold of the Kepler observations may very well reveal
non-radial modes even in those stars which are considered purely
radial pulsators.

One of the main purposes of observing pulsating stars is to com-
pare frequencies in a model of the star with the observed frequen-
cies and to refine the models for best agreement (asteroseismology).
For this purpose, mode identification of at least some frequencies
is essential. This is most easily done using multicolour photom-
etry (Moya, Garrido & Dupret 2004). An important advantage in
studying HADS stars is that one may reasonably assume that the
frequencies of highest amplitude are radial modes. This is clearly
very important since multicolour data which could be used for mode
identification are not available in Kepler photometry.

The ratio of first-overtone to fundamental periods, P1/P0, for
radial modes is a function of P0. A plot of P1/P0 as a function of P0

is called the Petersen diagram (Petersen 1973). Models show that
the period ratio is a unique function of stellar mass and chemical
composition for non-rotating stars. One can verify that a pair of
modes are indeed radial if the observed period ratio lies on the
computed curve in the Petersen diagram, and use the ratio to further
refine the stellar parameters, allowing other modes to be identified
from the frequencies alone.

Models show that the Petersen diagram is flat for log P < −0.9
(P in d), so that the period ratio is insensitive to mass except for the

longer periods. The ratio P1/P0 is mostly in the narrow range 0.77 <

P1/P0 < 0.78. Lower metallicity has the effect of shifting period
ratios towards slightly higher values for the same mass (Poretti
et al. 2005). It turns out that a difference in metallicity can balance
a difference in mass for log P < −0.9. For longer periods, the
position in the Petersen diagram is sensitive to mass. OP and OPAL
opacities lead to significantly different period ratios in the Petersen
diagram (Lenz et al. 2008), so one needs to be aware of this problem
as well.

Even for slow rotators, the effect of rotation on the period ra-
tio can be significant (Suárez, Garrido & Moya 2007). As the star
evolves from the main sequence, the frequency of an l = 2 mode may
approach that of a radial mode through the phenomenon of avoided
crossings. When this near-degeneracy in frequency occurs, the os-
cillation frequency of the radial mode is changed through mode
coupling. Coupling can only occur between modes with equal az-
imuthal orders, m, and spherical degrees, l, differing by 2. When
coupling occurs, the radial mode is no longer purely radial. For
instance, the character of the fundamental radial mode may re-
main almost unaltered, but the first overtone may assume a mixed
radial/quadrupole character. The effect of near-degeneracy on the
frequencies becomes very important for rotational velocities larger
than about 15–20 km s−1 (Suárez et al. 2007), causing a rapid change
in the theoretical period ratio (of the order of 0.01). Neglecting this
effect when fitting the observed period ratio would lead to an incor-
rect determination of metallicity and/or mass.

V2367 Cyg (KIC 9408694) was discovered in a ROTSE survey
(Akerlof et al. 2000) and confirmed as a HADS star by Jin et al.
(2003) and Pigulski et al. (2009). The star was included in the
Kepler commissioning run (Quarter 0 = Q0) and data were obtained
for a duration of 9.73 d with continuous short-cadence (SC) 1-min
exposures. It was not observed in SC mode for the next 409 d,
but continuous SC exposures were subsequently obtained for a
further 180 d (Kepler quarters Q6 and Q7). Fig. 1 shows part of
the light curve from SC data. Long-cadence (LC) data (30-min
exposures) are also available for Q1, Q2 and Q5. Characteristics of
SC data are described in Gilliland et al. (2010), while Jenkins et al.
(2010) describe the characteristics of LC data. The light curve has a
peak-to-peak amplitude of about 0.4 mag. The maximum brightness
level fluctuates by almost 0.1 mag, whereas minimum brightness
does not change very much. This star is an excellent candidate
for asteroseismology because one may presume that the mode of
highest amplitude is a radial mode. Since there is no rotational
splitting for radial modes, it provides a very valuable constraint
on the models. One would also expect that other radial modes
might be present which can be identified from the period ratio in
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Figure 1. A portion of the light curve of V2367 Cyg from Kepler SC data.
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Figure 2. A portion of the spectrum of V2367 Cyg in the region of Hβ (solid line) fitted with a model (dashed line) with Teff = 7300 ± 150 K, log g = 3.5 ±
0.1 (cgs) and v sin i = 100 ± 10 km s−1.

the Petersen diagram. In this paper, we present an analysis of the
Kepler photometry for this star and investigate its potential for
asteroseismology.

2 ST E L L A R PA R A M E T E R S

The KIC lists the following parameters for V2367 Cyg: Teff =
7500 K, R/R� = 3.2, from which log L/L� = 1.5. We have used
broad-band photometry from TYCHO-2, USNO, TASS, CMC14
and 2MASS to estimate the total observed bolometric flux [f bol =
(7.9 ± 0.5) × 10−13 W m−2]. The infrared flux method (Blackwell
& Shallis 1977) was then used with 2MASS magnitudes to deter-
mine Teff = 7280 ± 180 K and stellar angular diameter θ = 0.029 ±
0.002 mas.

We obtained a single spectrum of the star with the Bologna Faint
Object Spectrograph & Camera (BFOSC) attached to the 1.5-m
Loiano telescope.1 We used the echelle configuration with Grism
#9 and #10 as cross-dispersers. The typical resolution was R ∼ 5000.
The detector was a back-illuminated (EEV) 1300 × 1300 CCD with
pixel size 20 μm, readout noise 1.73 e− and gain 2.1 e− ADU−1. The
spectrum was obtained on the night of 2010 April 22 with exposure
time of 2700 s resulting in a signal-to-noise ratio (S/N) ranging from
60 to 100.

Processing of the spectrum involves bias subtraction, flat-field
calibration and scattered light correction. Extraction of the spectrum
and wavelength calibration was performed using the NOAO/IRAF

package.2

We determined Teff and log g of the star by minimizing the dif-
ference between the observed and the synthetic Hβ line profiles.
For the goodness-of-fit parameter, we used χ2 defined as

χ2 = 1

N

∑ (
Iobs − Ith

δIobs

)2

,

where N is the total number of points, Iobs and Ith are the intensities
of the observed and computed profiles, and δIobs is the photon noise.
The errors were estimated from the variation in the parameters re-
quired to increase χ2 by 1. As starting values of Teff and log g,
we used Teff and log g derived from the photometry. At the same
time, we determined the projected rotational velocity by matching

1 http://www.bo.astro.it/loiano/index.htm
2 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy,
Inc.

the Mg II λ4481 Å profile with a synthetic profile. The synthetic
profiles are computed with SYNTHE (Kurucz & Avrett 1981) on the
basis of ATLAS9 (Kurucz 1993) local thermodynamic equilibrium at-
mosphere models. All models are calculated using the solar opacity
distribution function, solar metallicity and a microturbulence ve-
locity of ξ = 2 km s−1. The atomic parameters for the spectral lines
were taken from Kurucz & Bell (1995).

Fig. 2 shows a comparison between the observed and computed
spectra in the Hβ region. The best fit is obtained for Teff = 7300 ±
150 K, log g = 3.5 ± 0.1 and v sin i = 100 ± 10 km s−1. The de-
termination of surface gravity was constrained by using the Mg I

triplet at 5167–5183 Å, and fixing the magnesium abundance using
Mg II λ4481 [log (Mg)/N(tot) = −4.26]. We find that the spectrum
is well reproduced by a normal solar abundance. Abundances rel-
ative to the solar values (Grevesse et al. 2010) were obtained for
the following atomic species: Na [0.1]; Mg [0.1]; Ca [0.0]; Ti [0.4];
Fe [0.1]; Ni [0.0]; and Ba [0.1]. The only anomaly is a very slight
overabundance of Ti.

The projected rotational velocity is more than twice that of other
HADS stars. From 22 HADS stars with measured v sin i, only three
have v sin i > 40 km s−1, the largest value being v sin i = 45 km s−1

(Rodrı́guez et al. 2000). Using the spectroscopic parameters and
the calibration of Torres, Andersen & Giménez (2010), we find a
luminosity log L/L� = 1.7 ± 0.1, mass M = 2.2 ± 0.2 M�, radius
R = 4.5 ± 0.7 R� and mean density ρ = (0.03 ± 0.01)ρ�. The
location of V2367 Cyg in the theoretical Hertzsprung–Russell (HR)
diagram is shown in Fig. 3. In this figure, we use the spectroscopic
effective temperature and luminosity. The theoretical red and blue
edges for radial overtones shown in the figure are those calculated
by Dupret et al. (2004). We note that V2367 Cyg lies within the
band occupied by HADS stars and appears to be near the end of
core hydrogen burning or just the start of hydrogen shell burning.

In a recent paper on the Kepler characterization of the variability
among A- and F-type stars (Uytterhoeven et al. 2011), the physical
parameters of V2367 Cyg are given as Teff = 6810 ± 130 K, log g =
3.80 ± 0.19. While the surface gravity is in agreement with ours,
the effective temperature is considerably lower than those estimated
here from the infrared flux method and our spectrum, which agree
very well with each other. Our effective temperature is also very
close to the KIC value. Why the effective temperature reported by
Uytterhoeven et al. (2011) is so different certainly requires further
investigation as it seems well outside the measurement error. A
lower effective temperature, if confirmed, will certainly impact the
mode identification.
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Figure 3. Location of δ Sct stars (small filled circles, derived from Rodrı́guez et al. 2000), HADS stars (larger filled circles, from McNamara 2000) and
V2367 Cyg (cross with 1σ error bars) in the theoretical HR diagram. Pulsation models in Table 2 are shown by the open squares. The best-fitting model which
includes mode coupling (Table 4) is shown by the large filled square. Also shown are the zero-age main-sequence, evolutionary tracks for models with masses
1.4–2.2 M� with no core overshoot. The calculated red and blue edges for radial modes p1, p2, p3 and p4 and mixing length α = 1.8 are from Dupret et al.
(2004). The fundamental radial red and blue edges are labelled 1R and 1B, while the fourth radial overtone red and blue edges are labelled 4R and 4B.

3 TH E KEPLER P H OTO M E T RY
A N D F R E QU E N C Y A NA LY S I S

V2367 Cyg (KIC 9408694) was observed with continuous 1-min
exposures from BJD 245 4953.53 to 245 4963.25 (Run 1: 14 242
observations) and BJD 245 5372.44 to 245 5552.56 (Run 2: 256 767
observations) for a total of 271 009 data points. The 409.2-d gap
modifies the usually clean window function. Fig. 4 shows the spec-
tral window in the two runs and in the combined data. Note that the
spectral window is about 10 times narrower in Run 2 than in Run
1. This suggests that to extract the frequencies it is probably best to
start with Run 2 and to include Run 1 only to refine the frequencies.

Because the amplitudes of the periodic components in this star are
so much larger than the noise level, slightly incorrect frequencies
will introduce spurious peaks in the periodogram with very high
S/N. It is thus imperative to use a technique of non-linear global
optimization to determine the frequencies with the greatest possible
precision. We started our analysis by performing a periodogram
analysis on Run 2 only to extract approximate frequencies for the
dominant independent modes, f 1 and f 2. These frequencies were
used as starting values in the global optimization technique. This
technique consists in fitting frequencies of the form n1f 1 + n2f 2,
where n1 and n2 are integers with |n1| ≤ 6 and |n2| ≤ 2. These values
of n1 and n2 were chosen empirically so as to fit as many of the
significant combination peaks as possible without excessive compu-
tational demand. The Fourier series was fitted by least squares to the
data, and the standard deviation of the residuals, σ , was noted. The
two frequencies were systematically changed to search for a global
minimum in σ . We found f 1 = 5.661 06 and f 2 = 7.148 95 d−1,
leading to a residual standard deviation σ = 9.91 mmag.

Next, we used the value of the third independent frequency, f 3,
obtained from the periodogram as a starting value. We fitted a
Fourier series of the form n1f 1 + n3f 3 which led to a global minimum
when f 3 = 7.775 64 d−1 and σ = 15.00 mmag. Using these optimum
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Figure 4. The spectral window in the first, second and combined runs of
the Kepler data.

values of f 1, f 2 and f 3 as starting values, we fitted a Fourier series,
with frequencies of the form n1f 1 + n2f 2 + n3f 3 and |n1| ≤ 6,
|n2| ≤ 2 and |n3| ≤ 1, to the Run 2 data. The optimum solution
is f 1 = 5.661 06, f 2 = 7.148 95 and f 3 = 7.775 65 d−1 leading to
a residual standard deviation of σ = 4.21 mmag. Finally, we took
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Table 1. Frequencies, f n (d−1), amplitudes, A (mmag), and phases, φ (rad),
for the most certain independent frequencies from the least-squares solution
of the combined data. The epoch of phase zero is BJD 245 4950.00.

n f n A φ

(d−1) (mmag) (rad)

1 5.661 058 ± 0.000 003 155.537 ± 0.005 2.006 13 ± 0.000 03
2 7.148 949 ± 0.000 029 16.833 ± 0.004 −0.216 42 ± 0.000 26
3 7.775 566 ± 0.000 054 8.935 ± 0.004 −0.090 11 ± 0.000 50
4 10.122 470 ± 0.000 043 2.481 ± 0.004 2.695 20 ± 0.001 81
5 9.815 725 ± 0.000 229 1.959 ± 0.004 1.729 36 ± 0.002 31
6 7.853 158 ± 0.000 325 1.506 ± 0.004 −2.249 30 ± 0.002 98
7 2.956 421 ± 0.000 400 1.296 ± 0.004 −1.671 54 ± 0.003 48
8 10.023 980 ± 0.000 440 1.113 ± 0.004 −1.581 70 ± 0.004 04
9 7.683 311 ± 0.000 427 1.067 ± 0.004 −1.714 67 ± 0.004 21

10 19.391 180 ± 0.000 631 0.733 ± 0.004 −2.724 27 ± 0.006 14
11 22.108 459 ± 0.000 668 0.653 ± 0.004 −2.321 21 ± 0.006 95
12 16.389 999 ± 0.000 804 0.541 ± 0.004 −1.005 80 ± 0.008 33
13 16.447 281 ± 0.000 900 0.518 ± 0.004 2.894 42 ± 0.008 73
14 16.543 739 ± 0.000 969 0.496 ± 0.004 −0.512 26 ± 0.009 10
15 16.487 141 ± 0.001 150 0.398 ± 0.004 0.831 12 ± 0.011 32

these values of f 1, f 2 and f 3 as starting values for an optimal solution
to the combined data (Run 1 + Run 2). For the same values of n1,
n2 and n3, we find very nearly the same solution as for Run 2: f 1 =
5.661 058(±3), f 2 = 7.148 949(±29) and f 3 = 7.775 566(±54) d−1,
giving σ = 4.21 mmag.

To facilitate extraction of further independent frequencies, we
fitted a Fourier series involving f 1, f 2 and f 3 with |n1| ≤ 8, |n2| ≤
2| and |n3| ≤ 1 (127 frequencies) and removed them from the data.
We calculated the periodogram and extracted over 500 significant
additional frequencies. The level of significance was judged by
the commonly used four sigma rule: a peak is significant if its
amplitude is at least four times higher than the background noise
level in the periodogram (Breger et al. 1993). There is still some
residual power in the form of a close doublet at f 1. This is probably
a result of amplitude variability (see below). As more and more
lower amplitude frequencies are considered, it becomes easier to
match them with combinations of higher amplitude frequencies
and it is no longer possible to determine whether they are truly
independent. In Table 1, we list those frequencies which are almost
certainly independent. These frequencies have amplitudes that are
too high to allow an interpretation as combination frequencies. The
periodogram after removal of f 1, f 2 and f 3 and their combinations
is shown in Fig. 5.

The low-frequency mode f 7 = 2.956 42 d−1 is particularly inter-
esting. Low frequencies driven by the convective blocking mecha-
nism are thought to be responsible for pulsations in the γ Doradus
(γ Dor) stars (Guzik et al. 2000). The effective temperature of
V2367 Cyg is slightly too high for convective blocking to work,
but considering the error in Teff one can certainly not rule out the
possibility that this star is a δ Sct–γ Dor hybrid. Assuming M =
2.2 M�, R = 4.5 R� and the observed v sin i = 100 km s−1, the
minimum rotational frequency is 0.44 d−1 and the critical rotational
frequency is 1.28 d−1. The critical equatorial rotational velocity is
about 300 km s−1, implying an inclination i = 20◦ if the star is ro-
tating at this velocity. It thus appears that f 7 cannot be the rotational
frequency.

The amplitude variation of the dominant frequencies was inves-
tigated. First, a global solution, which included approximately 70
terms for LC and SC data, was obtained using non-linear least
squares. For each independent frequency, separate residuals were
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Figure 5. Periodogram after removal of f 1, f 2, f 3 and their combination
frequencies.

calculated: they included only a given frequency and its harmonics
with all the other terms subtracted. Using these residuals, overlap-
ping 20-d subsets were created, with the starting epoch shifted by
2 d. For Q0, a single subset was created. Data from different quar-
ters were kept separate. A single frequency was then fitted to all
subsets. The resulting amplitudes are plotted in Fig. 6.

For f 1, there is a jump in amplitude of about 0.7 per cent
between Q6 and Q7. The same jump is seen for the harmonics
2f 1 and 3f 1. The jump is probably a result of a change in detec-
tor, which occurs as the field is rotated between quarters. Since the
same detector is used for a given field every four quarters, data for
Q0+Q1 and Q5 can be directly compared and so can data for Q2
and Q6 or for Q3 and Q7. Unfortunately, data for Q3 and Q4 are not
available for V2367 Cyg. The behaviour of f 1 and its two harmonics
is similar, which means that the shape of light curve for this mode
does not change. The small changes in amplitude for f 1 within a
given quarter, which are less than 0.3 per cent, may be real.

Because of the longer exposure time in LC data, there is an aver-
aging effect and the amplitudes are correspondingly lower than in
SC data. The effect depends on frequency: the higher the frequency,
the greater the reduction in amplitude. This effect is clearly visible
for 3f 1 where the reduction in amplitude for LC data is greatest at
about 20 per cent. For f 2 and f 3, the amplitude jump between Q6
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Figure 6. Relative amplitude variation for the three principal independent modes and two harmonics of f 1 as a function of time. The ratio of the amplitude
relative to the reference amplitude, Aref , is plotted as a function of time. The left-hand panels are from LC data and the right-hand panels are from SC data.
Note the higher amplitude ratio for SC data.

and Q7 is not very clear, but is in fact about the same (0.7 per cent)
as for f 1 and its harmonics.

In conclusion, there does seem to be evidence of changes in
amplitude of the principal modes during the course of the observa-
tions, but the result must remain uncertain because external factors
(change in detector, ageing of the detector) play an important role.
The small-scale amplitude changes are perhaps more secure and
deserve further investigation.

4 C O M B I NAT I O N F R E QU E N C I E S

Several different non-linear mechanisms may be responsible for
generating combination frequencies between two independent fre-
quencies, ν1 and ν2. For example, any non-linear transformation,
such as the dependence of emergent flux variation on the temper-
ature variation (F = σT4) will lead to cross-terms involving fre-
quencies ν1 + ν2 and ν1 − ν2 and other combinations. The inability
of the stellar medium to respond linearly to the pulsational wave is
another example of this effect. Combination frequencies may also

arise through resonant mode coupling when ν1 and ν2 are related
in a simple numerical way, such as 2ν1 ≈ 3ν2.

The interest in the combination frequencies derives from the fact
that their amplitudes and phases may allow indirect mode identifi-
cation. For non-radial modes, some combination frequencies are not
allowed depending on the parity of the modes (Buchler, Goupil &
Hansen 1997) which could lead to useful constraints on mode iden-
tification. Combination frequencies also arise through non-linear
interaction of two modes. Suppose a mode with frequency ν1, phase
φ1, interacts with a mode of frequency ν2, phase φ2. To first order,
the interaction terms will be the product of the two eigenfunctions
integrated over the star, leading to a frequency ν2 − ν1 with phase
φ2 − φ1 and frequency ν2 + ν1 with phase φ2 + φ1.

Suppose that we have two modes with frequencies n1ν1 and n2ν2

(harmonics of frequencies ν1 and ν2) and that we measure phase
φc for the combination frequency n1ν1 + n2ν2. Since, to first order,
the phase of the combination frequency will be n1φ1 + n2φ2, then
φr = φc − (n1φ1 + n2φ2) can be expected to be zero at some level
of approximation (Buchler et al. 1997; Degroote et al. 2009). In the
β Cep star HD 180642 observed by CoRoT , Degroote et al. (2009)
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Figure 7. The relative amplitude, Ar = Ac/(AiAj), which is the ratio of the combination frequency amplitude, Ac, to the product of the parent frequency
amplitudes Ai, Aj, is shown as a function of frequency in the top panels. In calculating Ar, amplitudes are measured in mmag. The relative phase, φr = φc −
(niφi + njφj), which is a function of the phase of the combination frequency, φc, and the phases, φi, φj of the parent frequencies, is shown in the bottom panels.
Combination frequencies involving f 1 and f 2 are shown in the left-hand panels and those involving f 1 and f 3 in the right-hand panels.

finds that φr varies from mode to mode: there is no correlation of φr

with frequency. In the δ Sct star KIC 9700322, on the other hand,
there is a strong correlation of φr with frequency (Breger et al.
2011). The amplitude, Ac, of a combination frequency relative to
the product of the amplitudes of the parent frequencies, AiAj, is
also interesting. The ratio Ar = Ac/(AiAj) is typically around 0.003
(when measured in mmag) in the δ Sct stars 44 Tau (Breger & Lenz
2008) and KIC 9700322 (Breger et al. 2011). In Fig. 7, we show Ac

as a function of frequency for combination modes involving f 1, f 2

and f 1, f 3.
We investigated the behaviour of φr and Ar for the combination

frequencies involving f 1 and f 2. There is a very clear relationship
between φr and frequency (Fig. 7, left-hand panels). The relation-
ship is well represented by φr = 1.389 − 0.1352f with φr in rad and
f in d−1. Almost the same relationship is exhibited by combination
frequencies involving f 1 and f 3 (Fig. 7, right-hand panels). Several
other δ Sct stars were investigated and in all of them a distinct cor-
relation is found between φr and frequency with ∂φr/∂f ≈ −0.1.

This intriguing relationship demands an explanation. Phase dif-
ferences between various photometric bands in δ Sct stars arise
due to a combination of geometric and temperature effects, which
makes these differences useful in mode identification. One of the
important parameters that contributes to this effect is the ratio of
flux variation to displacement which occurs in the photosphere dur-
ing pulsation. This ratio, usually called f , is complex in pulsation
models of δ Sct stars and introduces a phase difference in the light
variation. It turns out that both the real and the imaginary parts of
f strongly depend on frequency and are only weakly dependent on
the spherical harmonic degree. One may expect that this may at
least be partly responsible for the strong correlation between φr and
frequency, but further investigations are required.

We also note that there are clear logarithmic variations of Ar

with frequency which are different for different mode combinations.
The family involving n1f 1 has the highest values of Ac which is

well represented by Ac = −0.948 − 0.0663log10f . The next most
dominant family involves combinations of the form n1f 1 + f 2 and
can be represented by Ac = −1.904 − 0.0472log10f .

5 M O D E L L I N G

In order to model the oscillations in V2367 Cyg, we need to iden-
tify the modes. This is not an easy task for δ Sct stars, even when
multicolour photometry and/or high-dispersion line profile obser-
vations are available (see e.g. Casas et al. 2006; Poretti et al. 2009).
Rotation is a major problem in this regard because it modifies the
stellar structure and the physical processes occurring in the stellar
interior. This causes additional uncertainties in the interpretation of
the oscillation spectra, and greatly affects the oscillation spectrum
(see Goupil et al. 2005, for a review on this topic).

Recent studies (Lignières, Rieutord & Reese 2006; Reese,
Lignières & Rieutord 2008) using a non-perturbative approach lead
to a different distribution of the oscillation modes in rapidly ro-
tating stars. Recently, Reese et al. (2009b) have proposed a semi-
empirical method for identifying modes in rapidly rotating stars.
Non-perturbative calculations based on polytropic models converge
to those obtained with classical perturbation methods only when the
rotational frequency is much smaller than the pulsational frequency.

V2367 Cyg has a relatively large projected rotational velocity
(v sin i = 100 km s−1) and the deformation is significant, so that
perturbation techniques are likely to fail, the failure coming first
for high-order modes. In this work, we use a perturbation method
to calculate the frequencies under the following considerations: (1)
since V2367 Cyg is a HADS star, it is reasonable to expect that
radial modes will be excited along with non-radial modes; (2) in
Suárez, Bruntt & Buzasi (2005), the authors show that second-
order perturbation calculations, which include second-order near-
degeneracy, result in a linear dependence of the radial-mode period
ratios with rotational frequency for rotational velocities up to about
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100 km s−1; and (3) although non-perturbative calculations have
recently been applied to models more sophisticated than polytropes
(Reese et al. 2009a), they have not yet been done with realistic
stellar models.

5.1 Mode identification: radial modes

The above considerations clearly imply that no satisfactory solution
can be expected, given the current level of modelling in the pres-
ence of rotation. Nevertheless, some progress might be possible by
careful consideration of all available data.

In a HADS star, it is a reasonable first step to suppose that
the mode of highest amplitude is a radial mode (not necessarily
the fundamental radial mode). If we tentatively assume that f 1 is
the fundamental radial mode, one should be able to roughly esti-
mate the mean density of the star, ρ̄, using the simple relationship
P

√
ρ̄/ρ̄� = Q. Assuming Q = 0.033 d for a typical radial pul-

sator gives ρ̄/ρ̄� = 0.035. The mass and radius of V2367 Cyg
determined using Torres et al. (2010) give a stellar density of
ρ/ρ̄� = 0.025 ± 0.012 which is consistent with this value. This
argument at least suggests that a radial mode at this frequency is
consistent with what little information we have of the star.

If f 1 is the fundamental radial mode, we may hope to locate the
first-overtone radial mode because we know from models that the
period ratio of the first-overtone to fundamental radial mode is in
the range 0.77 < P1/P0 < 0.78. The observed period ratios which
involve f 1 and four other independent modes of highest amplitude
are as follows: f 1/f 2 = 0.792, f 1/f 3 = 0.728, f 1/f 6 = 0.721, f 1/f 9 =
0.737. None of these ratios falls within the range mentioned above.
Our argument has been that the radial modes should be of high
amplitude, but the modes which roughly fit the expected period
ratio have such low amplitude as to destroy the credibility of this
argument.

Our next step is to examine models in more detail to see if any
comes close to meeting our assumptions by relaxing the condition
that f 1 should be the fundamental radial mode. We start by assuming

that the two modes of largest amplitude, f 1 and f 2, are both radial.
Table 2 summarizes the results of this survey. All models were
calculated assuming no rotation.

The linear non-adiabatic models developed by MM are based
on the hydrodynamical code originally developed in Los Alamaos
(see e.g. Stellingwerf 1982; Bono & Stellingwerf 1994) and subse-
quently adapted to pre-main-sequence δ Sct stars (Marconi & Palla
1998). The CESAM code (Morel & Lebreton 2008) and the GRACO

code (Moya et al. 2004) were used by AM. AG computed stel-
lar equilibrium models using CLES (Scuflaire et al. 2008b) and the
non-adiabatic non-radial code MAD (Dupret 2001) which includes a
time-dependent convection treatment described in Grigahcène et al.
(2005). The models were specifically chosen so that the radial modes
are unstable. MDiC used the ATON code for stellar evolution (Ventura
et al. 1998) in the standard version for asteroseismic applications
(D’Antona et al. 2005). The LOSC adiabatic oscillation code by
Scuflaire et al. (2008a) was used to calculate the frequencies of ra-
dial modes. JD-D used the Warsaw–New Jersey evolutionary code
by Paczynski and the non-adiabatic pulsation code by Dziembowski
(1977).

In Table 2, we not only considered f 1 and f 2 as possible radial
modes, but also took into account the possibility that f 1 may be the
first harmonic. Since the expected frequency ratio of fundamental to
first overtone is about 0.775, we expect the fundamental frequency
to be about 4.36 d−1. The nearest observed frequency to this value is
a low-amplitude mode at f 69 = 4.3655 d−1 (amplitude 0.2 mmag),
which, for the purposes of the exercise, we could assume to be
the fundamental radial mode when f 1 is taken as the first overtone.
We now suppose that f 2 is the second overtone so that we have
f 69/f 1 = P1/P0 = 0.771 and f 1/f 2 = P1/P2 = 0.792. We see from
Table 2 that there are models for which P1/P0 is in good agreement
with observations. Unfortunately, in these models, there is poor
agreement between the observed and calculated frequencies. We
show the agreement between observations and models in Fig. 8.

The models of Table 2 are shown in Fig. 3 as the open squares.
We see from this figure that most of the models are within the
general error box. The main difficulty with the models, however, is

Table 2. Survey of some non-rotating models which attempt to match f 1 = 5.6611 and f 2 = 7.1490 d−1 by radial
modes. The columns labelled ν0, ν1 and ν2 are the frequencies of fundamental, first- and second-overtone radial
modes (in d−1). Frequencies in brackets indicate stable modes. The models by MDiC are adiabatic and therefore
provide no information about the stability of the modes. The ratios of first-overtone to fundamental periods, P1/P0,
and second-overtone to first-overtone periods, P2/P1, are given where appropriate.

N Author M/M� log Teff log L/L� ν0 ν1 ν2 P1/P0 P2/P1

1 MM 2.0 3.860 1.556 (7.370) (9.249) (11.158) – –
2 AM 2.1 3.857 1.574 5.55 7.22 9.05 0.769 –
3 AG 2.2 3.855 1.574 5.621 7.286 9.120 0.771 –
4 MM 2.2 3.863 1.61 (5.661) (7.342) (9.205) 0.771 –
5 MM 2.25 3.854 1.73 (4.340) (5.661) (7.111) 0.767 0.796
6 MM 2.3 3.863 1.77 (4.344) (5.660) (7.110) 0.767 0.796
7 MDiC 2.3 3.859 1.602 5.71 7.36 9.18 0.776 0.802
8 MDiC 2.3 3.858 1.602 5.65 7.28 9.08 0.776 0.802
9 MDiC 2.3 3.867 1.734 4.81 6.21 7.76 0.774 0.800

10 MDiC 2.3 3.863 1.797 4.46 5.76 7.19 0.774 0.801
11 MM 2.4 3.872 1.82 (4.354) (5.661) (7.111) 0.769 0.796
12 MDiC 2.5 3.867 1.797 4.35 5.62 7.01 0.774 0.802
13 JD-D 2.5 3.874 1.824 (4.370) (5.661) (7.098) 0.772 0.798
14 MM 2.0 3.845 1.507 – (5.655) (7.361) – 0.768
15 MM 2.0 3.845 1.655 (4.331) (5.678) (7.142) 0.763 0.795
16 MM 2.2 3.845 1.682 (4.351) (5.682) (7.133) 0.766 0.796
17 MM 2.3 3.845 1.693 (4.372) (5.693) (7.150) 0.768 0.797
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Figure 8. Comparison of observed frequencies (lines) with model frequen-
cies (points). The different symbols are used to guide the eye to frequencies
belonging to the same model.

that in most cases the radial modes are stable. This is not surprising
because they are all close to the blue edge of the instability strip.

Because of these problems, it is interesting to investigate models
in which we relax the condition that either f 1 or f 2 is a radial mode.
Some non-rotating models of this nature are shown in Table 3.
These models, computed by DP and MS, used evolutionary models
from the CESAM2K code (Morel 1997). The model eigenspectra were
computed using the LNAWENR linear, non-radial, non-adiabatic stellar
pulsation code (Suran 2008). Although the models provide a very
good fit to the observed frequencies, we are still faced with the
problem that all radial modes are stable. The additional problem
when allowing non-radial modes is that rotation has a much larger
effect on their frequencies than for radial modes. A full solution
which includes rotation is required before the frequencies of non-
radial modes can be compared with observations.

This exercise tells us that it is possible to fit the two frequencies
of highest amplitude with the first and second radial overtones with
a maximum uncertainty of only 0.5 per cent. It is even easier to relax
the condition that one of the modes be radial, but this is a dead-end
approach because we do not know the rotational profile and one
cannot use non-rotating models for this purpose. The main problem
in all cases, however, is that the radial modes are stable because the
star is too close to the blue edge.

5.2 Near-degeneracy effects on period ratios

The role of mode coupling (near-degeneracy) on radial period ra-
tios has been extensively discussed by Suárez et al. (2005), Suárez,
Garrido & Goupil (2006) and Suárez et al. (2007). They explored
the theoretical effects of rotation in calculating the period ratios of
double-mode radial pulsating stars with special emphasis on HADS

stars. In Suárez et al. (2006), the effect of moderate rotation on
both evolutionary models and oscillation frequencies is considered.
They show that these effects are important and should not be ne-
glected, as we have done. In particular, differences in period ratios
of some hundredths can be obtained even for low-to-moderate ro-
tational velocities (15–50 km s−1). In Suárez et al. (2007), an anal-
ysis of the relative intrinsic amplitudes of near-degenerate modes
shows that the identity of the fundamental radial mode and the ro-
tationally coupled quadrupole mode remains almost unaltered once
near-degeneracy effects are considered. The situation is different for
the first overtone which has a mixed character. The effect of near-
degeneracy on the oscillation frequencies becomes very important
for rotational velocities larger than about 15–20 km s−1, and the pe-
riod ratio is severely affected. This, in turn, leads to an uncertainty
in using the Petersen diagram to estimate the metallicity. This also
leads to ambiguities in mass determination of as much as 0.5 M�.

In the case of V2367 Cyg with v sin i = 100 km s−1, the above
studies indicate quite clearly the need to take rotational coupling
into account. The important fact here is that if a radial mode and a
(l, m) = (2, 0) mode are close enough, then they will repel each other.
We can try to use this effect to reproduce the period ratio observed
in V2367 Cyg. We assume that f 1 is the radial fundamental mode
and check whether f 2 or f 3 can be reproduced as a radial mode.
This means we have to find a model with l = 2 modes such that
the frequencies of radial modes are modified for better agreement
with observations. We also assume that rotational coupling mostly
affects f 2 or f 3 while leaving f 1 relatively unaffected.

If a radial mode is affected by rotational coupling with a
quadrupole mode, their relative amplitudes will be modified due to
mode mixing, since the mode is no longer purely radial (Daszyńska-
Daszkiewicz et al. 2002). Since f 2 and f 3 have much lower ampli-
tudes than f 1, it is reasonable to assume that mode coupling has
affected one or both of these modes rather than the f 1 mode. In
addition to rotation, convective core overshooting is an important
factor in the investigation because it changes the frequencies of l =
2 modes.

We examined models with different chemical composition and
also varied other parameters. In principle, a high period ratio
P1/P0 = 0.792 can be attained by reducing the metallicity sig-
nificantly and increasing the helium abundance, but these changes
move the corresponding models rather far from the observed val-
ues in the HR diagram. Moreover, there are no indications of
low metallicity from the admittedly poor-S/N spectra that we ob-
tained. Our codes use the formalisms described in Soufi, Goupil &
Dziembowski (1998) and Dziembowski (1977). These codes have
been used, for example, in Daszyńska-Daszkiewicz et al. (2002).

After several trials, we eventually found a model that fits f 1 and
f 2, as radial modes. In this model, f 1 is the fundamental radial
mode and f 2 the first overtone. Furthermore, both modes are un-
stable. In our model, f 3 could be an axisymmetric dipole mode
(frequency 7.82 d−1, observed frequency 7.77 d−1), but this might

Table 3. Models in which non-radial modes are included. The value of l is shown in brackets. A plus sign means
the mode is driven and a minus sign means that it is damped. The last column is the χ2 value of the fit to observed
frequencies (frequencies are in d−1).

N Author M/M� log Teff log L/L� f 1 f 2 f 3 f 6 χ2

1 DP/MS 2.24 3.873 1.71 5.661(+2) 7.150(−0) 7.774(+1) 7.860(+3) 2.1564
2 2.10 3.855 1.61 5.661(−0) 7.150(+2) 7.774(+3) 7.860(+3) 2.1653
3 2.26 3.856 1.73 5.661(+2) 7.150(+3) 7.774(+3) 7.860(+1) 1.3883
4 2.26 3.856 1.73 5.661(−0) 7.150(+3) 7.774(+3) 7.860(+1) 1.4636
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Figure 9. Lower panel: changes in model frequencies of (l, m) = (0, 0) and
(2, 0) modes due to different effects. ‘spher symm’ includes effects of the
horizontally averaged centrifugal force in the equilibrium model. In ‘non-
spher distor’, frequencies are determined from the perturbation method,
taking into account non-spherically symmetric distortion due to the cen-
trifugal force and second- and third-order Coriolis effects. In ‘0,2 coupling’,
the rotational coupling effect between radial and nearby quadrupole modes
is added. The red solid lines and open circles refer to radial modes and the
blue dashed lines and filled circles to quadrupole modes as indicated in the
box. Top panel: schematic diagram of the observed independent frequencies.

be an accidental agreement. In Fig. 9, we show how radial modes
and quadrupole modes interact with each other, and the effects of
distortion of spherical symmetry and mode coupling in the model.
Unfortunately, the other observed frequencies do not match the
model frequencies very well. The model is in the secondary contrac-
tion phase. We searched for a suitable frequency match in models
in the main-sequence and post-main-sequence phases, but failed to
find any that met the required conditions.

Concerning the validity of the perturbation approach that we have
used, it may be useful to note that in this model �/ω = 0.11 for f 1,
where � is the angular frequency of rotation, and ω is the angular
frequency of the mode. While a non-perturbative approach would be
better, we feel that �/ω is sufficiently small and that the perturbation
technique is not unreasonable in this case.

We conclude that it is not impossible to match the two dominant
modes in this star as radial modes, but only if rotational coupling
is taken into account. Note that at the fairly high rotational rate in
this star, the perturbation method that we used may not be very
accurate. The model just described places the star in the secondary
gravitational contraction phase. The model is shown as the filled
red square in Fig. 3 and listed in Table 4. The effective temperature
and luminosity of the model is close to the spectroscopically mea-
sured value. Although this model fails to fit other frequencies, it
provides a good starting solution for a more detailed investigation.

Table 4. Parameters for a model which includes rotational mode
coupling.

Author M/M� log Teff log L/L� f 1 f 2

Observed – – – 5.661 7.149
PL 2.10 3.8497 1.531 5.663 7.138

It is also encouraging to note that f 1 is matched by the fundamental
radial mode rather than the first overtone. A match of f 1 to the first
overtone means that the star has a lower density and larger radius,
making it more luminous and therefore a less satisfactory match to
observations. It also fits the perception that a mode with such an
overwhelmingly larger amplitude should be radial.

6 C O N C L U S I O N S

Although the principal modes in HADS stars are generally con-
sidered to be radial, the period ratios in V2367 Cyg do not match
the ratios of radial modes in models which do not include rotation
or mode coupling. Moreover, in those models where the ratio is
closest to the observed ratio, the modes are usually stable. Because
the projected rotational velocity of V2367 Cyg is the highest of the
HADS stars, models neglecting rotation and mode coupling are not
appropriate in studying this star.

Even moderate rotation can have a significant effect on the radial-
mode period ratios through coupling with a nearby quadrupole mode
(Suárez et al. 2006, 2007). Using a perturbation method, we were
able to match the two principal frequencies, f 1 and f 2, in V2367 Cyg
with fundamental and first-overtone radial modes by choosing the
conditions where a nearby l = 2 mode could affect the frequency
f 2 to the required extent. The resulting model with solar abundance
places the star in the secondary gravitational contraction phase with
mass M/M� = 2.10, log Teff = 3.8497 and log L/L� = 1.531.
The calculated period ratio is in good agreement with observations.
Both modes are unstable in the model and the location of the model
in the HR diagram is close to the observed location derived from
the spectrum of the star. Unfortunately, other frequencies do not
produce a good match. Therefore, we do not believe that this model
correctly describes the star. There may be other possible models that
fit in other evolutionary stages. Moreover, we have to keep in mind
that the use of a perturbation approach may not be entirely valid at
the relatively high rotation of this star. It would be important to use
a non-perturbative approach for such a rapid rotator. This study is
outside the scope of this work, but the model presented here might
be used as a good starting point.

In a HADS star observed by CoRoT , Poretti et al. (2011) find that
there is evidence for a small amplitude modulation of the principal
mode. In V2367 Cyg, we found amplitude modulation, but this can
be largely explained as an instrumental effect.

Unexplained low frequencies are present in most δ Sct stars
(Grigahcène et al. 2010) and in non-pulsating A-type stars in gen-
eral (Balona 2011). V2367 Cyg is no exception: there is at least one
low frequency (f 7 = 2.956 42 d−1) which is outside the frequency
domain of δ Sct stars and cannot be explained by rotation. The star
could be considered a δ Sct–γ Dor hybrid, but this must remain
speculative until the nature of these low frequencies is understood.

The expected and observed phase differences of combination
modes correlate with the frequencies of these modes. We investi-
gated some other δ Sct stars (HADS stars and otherwise) and find
a similar relationship. This correlation is not understood and the
problem requires further investigation.

There is no doubt that ground-based multicolour photometry
is an important requirement for further progress in modelling
V2367 Cyg. This will be an essential requirement to verify that
f 1 and f 2 are both radial and, hopefully, to identify a few more
modes. It is certainly necessary to take into account the high rota-
tional velocity of the star. While this is a complicating factor, it does
test the limits of our current modelling capabilities. The extremely
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high precision of Kepler photometry is a huge advantage in this
respect.
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Scuflaire R., Montalbán J., Théado S., Bourge P.-O., Miglio A., Godart M.,

Thoul A., Noels A., 2008a, Ap&SS, 316, 149
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Torres G., Andersen J., Giménez A., 2010, A&AR, 18, 67
Uytterhoeven K. et al., 2011, A&A, 534, A125
Ventura P., Zeppieri A., Mazzitelli I., D’Antona F., 1998, A&A, 334, 953
Walraven T., Walraven J., Balona L. A., 1992, MNRAS, 254, 59

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2011 The Authors, MNRAS 419, 3028–3038
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

 by guest on M
arch 17, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/



